
REFERENCES
Atzmon, D., Stern, R., Felner, A., Wagner, G., Bart
´
ak, R.,
and Zhou, N.-F. (2020). Robust multi-agent path find-
ing and executing. Journal of Artificial Intelligence Re-
search, 67:549–579.
Barer, M., Sharon, G., Stern, R., and Felner, A. (2014). Sub-
optimal Variants of the Conflict-Based Search Algorithm
for the Multi-Agent Pathfinding Problem. In Seventh An-
nual Symposium on Combinatorial Search.
Bart
´
ak, R., Zhou, N.-F., Stern, R., Boyarski, E., and
Surynek, P. (2017). Modeling and Solving the Multi-
Agent Pathfinding Problem in Picat. In IEEE 29th Inter-
national Conference on Tools with Artificial Intelligence
(ICTAI), pages 959–966.
Berndt, A., Duijkeren, N. V., Palmieri, L., and Keviczky, T.
(2020). A feedback scheme to reorder a multi-agent ex-
ecution schedule by persistently optimizing a switchable
action dependency graph. CoRR, abs/2010.05254.
Berndt, A., Duijkeren, N. V., Palmieri, L., Kleiner, A., and
Keviczky, T. (2024). Receding horizon re-ordering of
multi-agent execution schedules. IEEE Transactions on
Robotics, 40:1356–1372.
Chen, Z., Harabor, D. D., Li, J., and Stuckey, P. J. (2021).
Symmetry breaking for k-robust multi-agent path find-
ing. Proceedings of the AAAI Conference on Artificial
Intelligence, 35:12267–12274.
Dresner, K. and Stone, P. (2008). A Multiagent Approach to
Autonomous Intersection Management. Journal of Arti-
ficial Intelligence Research (JAIR), 31:591–656.
Erdem, E., Kisa, D. G., Oztok, U., and Sch
¨
uller, P. (2013).
A General Formal Framework for Pathfinding Problems
with Multiple Agents. In Twenty-Seventh AAAI Confer-
ence on Artificial Intelligence.
Feng, Y., Paul, A., Chen, Z., and Li, J. (2024). A real-
time rescheduling algorithm for multi-robot plan execu-
tion. Proceedings of the International Conference on Au-
tomated Planning and Scheduling, 34:201–209.
Gregoire, J.,
ˇ
C
´
ap, M., and Frazzoli, E. (2017). Locally-
optimal multi-robot navigation under delaying distur-
bances using homotopy constraints. Autonomous Robots
2017 42:4, 42:895–907.
H
¨
onig, W., Kiesel, S., Tinka, A., Durham, J. W., and Aya-
nian, N. (2019). Persistent and robust execution of mapf
schedules in warehouses. IEEE Robotics and Automation
Letters, 4:1125–1131.
H
¨
onig, W., Kumar, T. K., Cohen, L., Ma, H., Xu, H., Aya-
nian, N., and Koenig, S. (2016). Multi-agent path finding
with kinematic constraints. Proceedings of the Interna-
tional Conference on Automated Planning and Schedul-
ing, 26:477–485.
Kottinger, J., Geft, T., Almagor, S., Salzman, O., and Lahi-
janian, M. (2024). Introducing delays in multi-agent path
finding. In The International Symposium on Combinato-
rial Search.
Li, J., Chen, Z., Harabor, D., Stuckey, P. J., and Koenig, S.
(2021a). Anytime Multi-Agent Path Finding via Large
Neighborhood Search. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence,
pages 4127–4135, Montreal, Canada. International Joint
Conferences on Artificial Intelligence Organization.
Li, J., Harabor, D., Stuckey, P. J., Ma, H., and Koenig, S.
(2019). Symmetry-Breaking Constraints for Grid-Based
Multi-Agent Path Finding. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):6087–6095.
Li, J., Ruml, W., and Koenig, S. (2021b). EECBS: A
Bounded-Suboptimal Search for Multi-Agent Path Find-
ing. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(14):12353–12362.
Ma, H., Kumar, T. K., and Koenig, S. (2017). Multi-agent
path finding with delay probabilities. Proceedings of
the AAAI Conference on Artificial Intelligence, 31:3605–
3612.
Morris, R., Pasareanu, C., Luckow, K., Malik, W., Ma, H.,
Kumar, T., and Koenig, S. (2016). Planning, Scheduling
and Monitoring for Airport Surface Operations. In The
Workshops of the Thirtieth AAAI Conference on Artificial
Intelligence, pages 608–614.
Okumura, K. (2023). Improving lacam for scalable eventu-
ally optimal multi-agent pathfinding. In Elkind, E., edi-
tor, Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI-23, pages
243–251. International Joint Conferences on Artificial
Intelligence Organization. Main Track.
Phillips, M. and Likhachev, M. (2011). SIPP: Safe interval
path planning for dynamic environments. In 2011 IEEE
International Conference on Robotics and Automation,
pages 5628–5635.
Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R.
(2015). Conflict-based search for optimal multi-agent
pathfinding. Artificial intelligence, 219:40–66.
Silver, D. (2005). Cooperative Pathfinding. Proceedings of
the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, 1(1):117–122.
Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H.,
Walker, T., Li, J., Atzmon, D., Cohen, L., Kumar, T.,
et al. (2019). Multi-agent pathfinding: Definitions, vari-
ants, and benchmarks. In Proceedings of the Interna-
tional Symposium on Combinatorial Search, volume 10,
pages 151–158.
Su, Y., Veerapaneni, R., and Li, J. (2024). Bidirectional
temporal plan graph: Enabling switchable passing orders
for more efficient multi-agent path finding plan execu-
tion. Proceedings of the AAAI Conference on Artificial
Intelligence, 38:17559–17566.
Surynek, P. (2010). An optimization variant of multi-robot
path planning is intractable. In Proceedings of the AAAI
conference on artificial intelligence, volume 24, pages
1261–1263.
Surynek, P. (2020). Bounded Sub-optimal Multi-Robot Path
Planning Using Satisfiability Modulo Theory (SMT) Ap-
proach. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 11631–
11637, Las Vegas, NV, USA. IEEE.
Wagner, A., Veerapaneni, R., and Likhachev, M. (2022).
Minimizing coordination in multi-agent path finding
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
630