
Table 4: Experimental results on CUHK03 labeled
dataset(p=100).
Method r=1 r=5 r=10 r=20 r=30
(Zhao et al., 2013) 8.8 24.1 38.3 53.4 −−
(Koestinger et al., 2012) 14.2 48.5 52.6 −− −−
(Li et al., 2014) 20.6 51.5 66.5 80.0 −−
(Liao et al., 2015) 52.2 82.2 92.1 96.2 −−
(Xiong et al., 2014) 48.2 59.3 66.4 −− −−
(Wang et al., 2016) 52.2 83.7 89.5 94.3 96.5
(Ahmed et al., 2015) 54.7 86.5 94.0 96.1 98.0
(Varior et al., 2016b) 57.3 80.1 88.3 −− −−
(Paisitkriangkrai et al., 2015) 62.1 89.1 94.3 97.8 −−
(Zhang et al., 2016a) 58.9 85.6 92.5 96.3 −−
(Wu et al., 2016) 63.2 90.0 92.7 97.6 −−
(Varior et al., 2016a) 68.1 88.1¡¡ 94.6 −− −
(Zhou et al., 2017) 61.6 88.3 95.2 98.4 −−
(Bai et al., 2017) 76.6 94.6 98.0 −− −−
DictL(baseline) 65.2 83.5 88.7 93.6 96.0
DictR 73.2 90.3 93.3 96.8 98.0
DictRWM 75.3 93.3 94.5 97.8 98.0
DictRWB 74.2 91.4 93.6 97.5 98.0
DictRWMB 77.1 94.7 97.9 98.0 99.0
Table 5: Experiments comparison with handcraft(HC),
ResNet152 features and its combination on CUHK03
datasets, respectively.
Method r=1 r=5 r=10 r=20 r=30
DictRWMB(ResNet152) 47.7 79.8 88.7 95.1 97.2
DictRWMB(HC) 72.3 91.7 94.9 97.1 98.0
DictRWMB(HC+ResNet152) 77.1 94.7 97.9 98.0 99.0
for the retrieval related tasks. In the future, we will
deploy our approach to other tasks, such as image and
video retrieval.
REFERENCES
Ahmed, E., Jones, M., and Marks, T. K. (2015). An
improved deep learning architecture for person re-
identification. In CVPR.
Bai, S., Bai, X., and Tian, Q. (2017). Scalable person re-
identification on supervised smoothed manifold. In
CVPR.
Baltieri, D., Vezzani, R., and Cucchiara, R. (2011). 3dpes:
3d people dataset for surveillance and forensics. In
ACM workshop on Human gesture and behavior un-
derstanding.
Barman, A. and Shah, S. K. (2017). Shape: A novel graph
theoretic algorithm for making consensus-based deci-
sions in person re-identification systems. In ICCV.
Chang, X., Huang, P., Shen, Y., Liang, X., Yang, Y., and
Hauptmann, A. G. (2018). RCAA: relational context-
aware agents for person search. In Ferrari, V., Hebert,
M., Sminchisescu, C., and Weiss, Y., editors, ECCV.
Chen, D., Yuan, Z., Chen, B., and Zheng, N. (2016a). Sim-
ilarity learning with spatial constraints for person re-
identification. In CVPR.
Chen, S.-Z., Guo, C.-C., and Lai, J.-H. (2016b). Deep rank-
ing for person re-identification via joint representation
learning. IEEE TIP.
Chen, Y.-C., Zheng, W.-S., and Lai, J. (2015). Mirror repre-
sentation for modeling view-specific transform in per-
son re-identification. In IJCAI.
Gao, J., Jiang, X., Dou, S., Li, D., Miao, D., and Zhao,
C. (2024). Re-id-leak: Membership inference attacks
against person re-identification. Int. J. Comput. Vis.,
132(10):4673–4687.
Gray, D., Brennan, S., and Tao, H. (2007). Evaluating ap-
pearance models for recognition, reacquisition, and
tracking. In ECCV.
He, K., Zhang, Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In CVPR.
Huang, Y., Zhang, Z., Wu, Q., Zhong, Y., and Wang, L.
(2024). Attribute-guided pedestrian retrieval: Bridg-
ing person re-id with internal attribute variability. In
CVPR.
Jose, C. and Fleuret, F. (2016). Scalable metric learning via
weighted approximate rank component analysis. In
ECCV.
Koestinger, M., Hirzer, M., Wohlhart, P., Roth, P. M., and
Bischof, H. (2012). Large scale metric learning from
equivalence constraints. In CVPR.
Li, S., Shao, M., and Fu, Y. (2015). Cross-view projective
dictionary learning for person re-identification. In IJ-
CAI.
Li, W., Zhao, R., Xiao, T., and Wang, X. (2014). Deep-
reid: Deep filter pairing neural network for person re-
identification. In CVPR.
Liao, S., Hu, Y., Zhu, X., and Li, S. Z. (2015). Person re-
identification by local maximal occurrence represen-
tation and metric learning. In CVPR.
Lisanti, G., Masi, I., and Del Bimbo, A. (2014). Match-
ing people across camera views using kernel canonical
correlation analysis. In ICDSC.
Liu, W., Chang, X., Chen, L., Phung, D., Zhang, X., Yang,
Y., and Hauptmann, A. G. (2020). Pair-based uncer-
tainty and diversity promoting early active learning for
person re-identification. ACM Trans. Intell. Syst. Tech-
nol., 11(2):21:1–21:15.
Matsukawa, T., Okabe, T., Suzuki, E., and Sato, Y.
(2016). Hierarchical gaussian descriptor for person
re-identification. In CVPR.
Mignon, A. and Jurie, F. (2012). Pcca: A new approach for
distance learning from sparse pairwise constraints. In
CVPR.
Paisitkriangkrai, S., Shen, C., and van den Hengel, A.
(2015). Learning to rank in person re-identification
with metric ensembles. In CVPR.
Pedagadi, S., Orwell, J., Velastin, S., and Boghossian, B.
(2013). Local fisher discriminant analysis for pedes-
trian re-identification. In CVPR.
Peng, P., Xiang, T., Wang, Y., Pontil, M., Gong, S.,
Huang, T., and Tian, Y. (2016). Unsupervised cross-
dataset transfer learning for person re-identification.
In CVPR.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
1268