
(2022). Dos and don’ts of machine learning in com-
puter security. In 31st USENIX Security Symposium
(USENIX Security 22), pages 3971–3988.
Asif, M. K., Khan, T. A., Taj, T. A., Naeem, U., and Yakoob,
S. (2013). Network intrusion detection and its strate-
gic importance. In 2013 IEEE Business Engineer-
ing and Industrial Applications Colloquium (BEIAC),
pages 140–144.
Barbero, F., Pendlebury, F., Pierazzi, F., and Cavallaro, L.
(2022). Transcending transcend: Revisiting malware
classification in the presence of concept drift. In 2022
IEEE Symposium on Security and Privacy (SP), pages
805–823. IEEE.
Benjelloun, F.-Z., Lahcen, A. A., and Belfkih, S. (2019).
Outlier detection techniques for big data streams: fo-
cus on cyber security. International Journal of Inter-
net Technology and Secured Transactions, 9(4):446–
474.
Bistron, M. and Piotrowski, Z. (2021). Artificial intelli-
gence applications in military systems and their in-
fluence on sense of security of citizens. Electronics,
10(7):871.
Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J.
(2000). Lof: identifying density-based local outliers.
In Proceedings of the 2000 ACM SIGMOD interna-
tional conference on Management of data, pages 93–
104.
Chitrakar, R. and Chuanhe, H. (2012). Anomaly detection
using support vector machine classification with k-
medoids clustering. In 2012 Third Asian himalayas in-
ternational conference on internet, pages 1–5. IEEE.
Dasu, T., Krishnan, S., Venkatasubramanian, S., and Yi,
K. (2006). An information-theoretic approach to de-
tecting changes in multi-dimensional data streams. In
Proc. Symposium on the Interface of Statistics, Com-
puting Science, and Applications (Interface).
Ding, Z. and Fei, M. (2013). An anomaly detection ap-
proach based on isolation forest algorithm for stream-
ing data using sliding window. IFAC Proceedings Vol-
umes, 46(20):12–17.
Ditzler, G. and Polikar, R. (2011). Hellinger distance based
drift detection for nonstationary environments. In
2011 IEEE symposium on computational intelligence
in dynamic and uncertain environments (CIDUE),
pages 41–48. IEEE.
Gemaque, R. N., Costa, A. F. J., Giusti, R., and Dos San-
tos, E. M. (2020). An overview of unsupervised drift
detection methods. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 10(6):e1381.
Gomes, C., Jin, Z., and Yang, H. (2021). Insurance fraud
detection with unsupervised deep learning. Journal of
Risk and Insurance, 88(3):591–624.
Hann
´
ak, G., Horv
´
ath, G., K
´
ad
´
ar, A., and Szalai, M. D.
(2023). Bilateral-weighted online adaptive isolation
forest for anomaly detection in streaming data. Statis-
tical Analysis and Data Mining: The ASA Data Sci-
ence Journal, 16(3):215–223.
Henriksen, A. (2023). Db-drift: Concept drift aware
density-based anomaly detection for maritime trajec-
tories. In 2023 Sensor Signal Processing for Defence
Conference (SSPD), pages 1–5.
Huasuya, T. (2019). Omnianomaly.
Iwashita, A. S. and Papa, J. P. (2018). An overview on con-
cept drift learning. IEEE access, 7:1532–1547.
Layton, P. (2021). Fighting artificial intelligence battles:
Operational concepts for future ai-enabled wars. Net-
work, 4(20):1–100.
Leenen, L. and Meyer, T. (2021). Artificial intelligence
and big data analytics in support of cyber defense. In
Research anthology on artificial intelligence applica-
tions in security, pages 1738–1753. IGI Global.
Li, B., Wang, Y.-j., Yang, D.-s., Li, Y.-m., and Ma, X.-
k. (2019). Faad: an unsupervised fast and accurate
anomaly detection method for a multi-dimensional se-
quence over data stream. Frontiers of Information
Technology & Electronic Engineering, 20(3):388–
404.
Liu, A., Lu, J., Liu, F., and Zhang, G. (2018). Accumulat-
ing regional density dissimilarity for concept drift de-
tection in data streams. Pattern Recognition, 76:256–
272.
Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation
forest. In 2008 eighth ieee international conference
on data mining, pages 413–422. IEEE.
Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., and Zhang,
G. (2018). Learning under concept drift: A review.
IEEE transactions on knowledge and data engineer-
ing, 31(12):2346–2363.
Maci
´
a-Fern
´
andez, G., Camacho, J., Mag
´
an-Carri
´
on, R.,
Garc
´
ıa-Teodoro, P., and Ther
´
on, R. (2018). Ugr ‘16:
A new dataset for the evaluation of cyclostationarity-
based network idss. Computers & Security, 73:411–
424.
Moro, S., R. P. and Cortez, P. (2012). Bank Market-
ing. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5K306.
Nadeem, A., Vos, D., Cao, C., Pajola, L., Dieck, S., Baum-
gartner, R., and Verwer, S. (2023). Sok: Explainable
machine learning for computer security applications.
In 2023 IEEE 8th European Symposium on Security
and Privacy (EuroS&P), pages 221–240. IEEE.
Quinlan, R. (1987). Thyroid Disease. UCI
Machine Learning Repository. DOI:
https://doi.org/10.24432/C5D010.
Siddiqui, M. A., Stokes, J. W., Seifert, C., Argyle, E., Mc-
Cann, R., Neil, J., and Carroll, J. (2019). Detecting cy-
ber attacks using anomaly detection with explanations
and expert feedback. In ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 2872–2876. IEEE.
Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., and Pei, D.
(2019). Robust anomaly detection for multivariate
time series through stochastic recurrent neural net-
work. In Proceedings of the 25th ACM SIGKDD inter-
national conference on knowledge discovery & data
mining, pages 2828–2837.
Tan, S. C., Ting, K. M., and Liu, T. F. (2011). Fast anomaly
detection for streaming data. In Twenty-second in-
ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy
96