
Compulsive Disorder Events in Children and
Adolescents in the Wild Using a Wearable Biosensor
(Wrist Angel): Protocol for the Analysis Plan of a
Nonrandomized Pilot Study. JMIR Research Protocols,
12(1), e48571. https://doi.org/10.2196/48571
Popovic, S., Slamic, M., & Cosic, K. (2006). Scenario Self-
Adaptation in VR Exposure Therapy for PTSD
Provenza, N. R., Sheth, S. A., Dastin-van Rijn, E. M.,
Mathura, R. K., Ding, Y., Vogt, G. S., Avendano-
Ortega, M., Ramakrishnan, N., Peled, N., Gelin, L. F.
F., Xing, D., Jeni, L. A., Ertugrul, I. O., Barrios-
Anderson, A., Matteson, E., Wiese, A. D., Xu, J.,
Viswanathan, A., Harrison, M. T., … Borton, D. A.
(2021). Long-term ecological assessment of
intracranial electrophysiology synchronized to
behavioral markers in obsessive-compulsive disorder.
Nature Medicine, 27(12), 2154–2164. https://doi.org/
10.1038/s41591-021-01550-z
Serrano, M. Á., Rosell-Clari, V., & García-Soriano, G.
(2019). The Role of Perceived Control in the
Psychophysiological Responses to Disgust of
Subclinical OCD Women. Sensors, 19(19), Article 19.
https://doi.org/10.3390/s19194180
Shevlin, M., McBride, O., Murphy, J., Miller, J. G.,
Hartman, T. K., Levita, L., Mason, L., Martinez, A. P.,
McKay, R., Stocks, T. V. A., Bennett, K. M., Hyland,
P., Karatzias, T., & Bentall, R. P. (2020). Anxiety,
depression, traumatic stress and COVID-19-related
anxiety in the UK general population during the
COVID-19 pandemic. BJPsych Open, 6(6), e125.
https://doi.org/10.1192/bjo.2020.109
Slade, T., Johnston, A., Oakley Browne, M. A., Andrews,
G., & Whiteford, H. (2009). 2007 National Survey of
Mental Health and Wellbeing: Methods and Key
Findings. Australian & New Zealand Journal of
Psychiatry, 43(7), 594–605. https://doi.org/10.1080/
00048670902970882
Stein, D. J., Costa, D. L. C., Lochner, C., Miguel, E. C.,
Reddy, Y. C. J., Shavitt, R. G., van den Heuvel, O. A.,
& Simpson, H. B. (2019). Obsessive–compulsive
disorder. Nature Reviews. Disease Primers, 5(1), 52.
https://doi.org/10.1038/s41572-019-0102-3
Stratou, G., Scherer, S., Gratch, J., & Morency, L.-P.
(2015). Automatic nonverbal behavior indicators of
depression and PTSD: The effect of gender. Journal on
Multimodal User Interfaces, 9(1), 17–29.
https://doi.org/10.1007/s12193-014-0161-4
Sundaravadivel, P., Goyal, V., & Tamil, L. (2020). i-RISE:
An IoT-based Semi-Immersive Affective monitoring
framework for Anxiety Disorders. 2020 IEEE
International Conference on Consumer Electronics
(ICCE), 1–5. https://doi.org/10.1109/ICCE46568.2020.
9043156
Suneetha, C., & Anitha, R. (2024). Advancements in
Speech-Based Emotion Recognition and PTSD
Detection through Machine and Deep Learning
Techniques: A Comprehensive Survey. International
Journal of Electronics and Communication
Engineering, https://doi.org/10.14445/23488549/
IJECE-V11I5P121
Thieme, A., Hanratty, M., Lyons, M., Palacios, J., Marques,
R. F., Morrison, C., & Doherty, G. (2023). Designing
Human-centered AI for Mental Health: Developing
Clinically Relevant Applications for Online CBT
Treatment. ACM Transactions on Computer-Human
Interaction, 30(2), 27:1-27:50.
Ugbolue, U. C., Duclos, M., Urzeala, C., Berthon, M.,
Kulik, K., Bota, A., Thivel, D., Bagheri, R., Gu, Y.,
Baker, J. S., Andant, N., Pereira, B., Rouffiac, K.,
Clinchamps, M., Dutheil, F., & on behalf of the
COVISTRESS Network. (2020). An Assessment of the
Novel COVISTRESS Questionnaire: COVID-19
Impact on Physical Activity, Sedentary Action and
Psychological Emotion. Journal of Clinical Medicine,
9(10), Article 10. https://doi.org/10.3390/jcm9103352
U.S. Department of Health & Human Services. (2024).
Anxiety Disorders. National Institute of Mental
Health https://www.nimh.nih.gov/health/topics/anxiety-
disorders
Verma, G., & Tiwary, U. S. (2017). Affect Representation
and Recognition in 3D Continuous Valence-Arousal-
Dominance Space. Multimedia Tools and Applications,
76. https://doi.org/10.1007/s11042-015-3119-y
Wagner, J., Triantafyllopoulos, A., Wierstorf, H., Schmitt,
M., Burkhardt, F., Eyben, F., & Schuller, B. W. (2023).
Dawn of the Transformer Era in Speech Emotion
Recognition: Closing the Valence Gap. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 45(9), 10745–10759. IEEE Transactions
on Pattern Analysis and Machine Intelligence.
https://doi.org/10.1109/TPAMI.2023.3263585
Walz, L. C., Nauta, M. H., & aan het Rot, M. (2014).
Experience sampling and ecological momentary
assessment for studying the daily lives of patients with
anxiety disorders: A systematic review. Journal of
Anxiety Disorders, 28(8), 925–937. https://doi.org/10.
1016/j.janxdis.2014.09.022
Watson, D., Clark, L. A., & Tellegen, A. (1988).
Development and validation of brief measures of positive
and negative affect: The PANAS scales. Journal of
Personality and Social Psychology, 54(6), 1063–1070.
https://doi.org/10.1037/0022-3514.54.6.1063
Wörtwein, T., & Scherer, S. (2017). What really matters—
An information gain analysis of questions and reactions
in automated PTSD screenings. 2017 Seventh
International Conference on Affective Computing and
Intelligent Interaction (ACII), 15–20. https://doi.
org/10.1109/ACII.2017.8273573
Yazdani, A., Skodras, E., Fakotakis, N., & Ebrahimi, T.
(2013). Multimedia content analysis for emotional
characterization of music video clips. EURASIP
Journal on Image and Video Processing, 2013(1), 26.
https://doi.org/10.1186/1687-5281-2013-26
Yehuda, R., Hoge, C. W., McFarlane, A. C., Vermetten, E.,
Lanius, R. A., Nievergelt, C. M., Hobfoll, S. E.,
Koenen, K. C., Neylan, T. C., & Hyman, S. E. (2015).
Post-traumatic stress disorder. Nature Reviews Disease
Primers, 1(1), 15057. https://doi.org/10.1038/nrdp.
2015.57
Affective Computing in Anxiety Disorders: A Rapid Literature Review of Emotion Recognition Applications
283