
IEEE Robotics and Automation Letters, 5(2):3227–
3234.
Jahanbakht, M., Azghadi, M. R., and Waltham, N. J. (2023).
Semi-supervised and weakly-supervised deep neural
networks and dataset for fish detection in turbid un-
derwater videos. Ecological Informatics, 78:102303.
Jeong, J., Verma, V., Hyun, M., Kannala, J., and Kwak, N.
(2021). Interpolation-based semi-supervised learning
for object detection. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
11602–11611.
Jiang, B., Luo, R., Mao, J., Xiao, T., and Jiang, Y. (2018).
Acquisition of localization confidence for accurate ob-
ject detection. In European conference on computer
vision (ECCV), pages 784–799.
Lau, P. Y. and Lai, S. C. (2021). Localizing fish in highly
turbid underwater images. In International Workshop
on Advanced Imaging Technology (IWAIT) 2021, vol-
ume 11766, pages 294–299. SPIE.
Li, S., Liu, J., Shen, W., Sun, J., and Tan, C. (2023).
Robust teacher: Self-correcting pseudo-label-guided
semi-supervised learning for object detection. Com-
puter Vision and Image Understanding, 235:103788.
Liu, Y.-C., Ma, C.-Y., He, Z., Kuo, C.-W., Chen, K., Zhang,
P., Wu, B., Kira, Z., and Vajda, P. (2021). Unbi-
ased teacher for semi-supervised object detection. In-
ternational Conference on Learning Representations
(ICLR).
Mi, P., Lin, J., Zhou, Y., Shen, Y., Luo, G., Sun, X., Cao, L.,
Fu, R., Xu, Q., and Ji, R. (2022). Active teacher for
semi-supervised object detection. In The IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).
Pan, T.-S., Huang, H.-C., Lee, J.-C., and Chen, C.-H.
(2021). Multi-scale resnet for real-time underwater
object detection. Signal, Image and Video Processing,
15:941–949.
Peng, L., Zhu, C., and Bian, L. (2023). U-shape transformer
for underwater image enhancement. IEEE Transac-
tions on Image Processing, 32:3066–3079.
Popat, S. K., Deshmukh, P. B., and Metre, V. A. (2017). Hi-
erarchical document clustering based on cosine simi-
larity measure. In International Conference on Intelli-
gent Systems and Information Management (ICISIM),
pages 153–159. IEEE.
Ren, B., Feng, J., Wei, Y., and Huang, Y. (2022). Under-
water target detection algorithm based on improved
yolov5. Advances in Engineering Technology Re-
search, 1(3):713–713.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28.
Saleh, A., Laradji, I. H., Konovalov, D. A., Bradley, M.,
Vazquez, D., and Sheaves, M. (2020). A realistic fish-
habitat dataset to evaluate algorithms for underwater
visual analysis. Scientific Reports, 10(1):14671.
Sarkar, P., De, S., and Gurung, S. (2022). A survey on un-
derwater object detection. Intelligence Enabled Re-
search: DoSIER, 1029:91–104.
Seo, J., Bae, W., Sutherland, D. J., Noh, J., and Kim, D.
(2022). Object discovery via contrastive learning for
weakly supervised object detection. In European Con-
ference on Computer Vision, pages 312–329. Springer.
Sohn, K., Zhang, Z., Li, C.-L., Zhang, H., Lee, C.-Y., and
Pfister, T. (2020). A simple semi-supervised learning
framework for object detection. AAAI Conference on
Artificial Intelligence.
Song, P., Li, P., Dai, L., Wang, T., and Chen, Z. (2023).
Boosting r-cnn: Reweighting r-cnn samples by rpn’s
error for underwater object detection. Neurocomput-
ing, 530:150–164.
Song, W., Wang, Y., Huang, D., Liotta, A., and Perra, C.
(2020). Enhancement of underwater images with sta-
tistical model of background light and optimization of
transmission map. IEEE Transactions on Broadcast-
ing, 66(1):153–169.
Srividhya, K. and Ramya, M. (2017). Accurate object
recognition in the underwater images using learning
algorithms and texture features. Multimedia Tools and
Applications, 76:25679–25695.
Tarvainen, A. and Valpola, H. (2017). Weight-averaged
consistency targets improve semi-supervised deep
learning results. Neural Information Processing Sys-
tems (NeurIPS).
Wang, Y., Liu, Z., and Lian, S. (2023). Semi-supervised
object detection: A survey on recent research and
progress. arXiv:2306.14106.
Wu, W., Chang, H., Zheng, Y., Li, Z., Chen, Z., and Zhang,
Z. (2022). Contrastive learning-based robust object
detection under smoky conditions. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), pages 4294–4301.
Xie, Q., Dai, Z., Hovy, E., Luong, T., and Le, Q.
(2020). Unsupervised data augmentation for consis-
tency training. Advances in neural information pro-
cessing systems, 33:6256–6268.
Xu, S., Zhang, M., Song, W., Mei, H., He, Q., and Liotta,
A. (2023). A systematic review and analysis of deep
learning-based underwater object detection. Neuro-
computing, 527:204–232.
Yu, H. (2020). Research progresson object detection and
tracking techniques utilization in aquaculture: a re-
view. Journal of Dalian Ocean University, 35(6):793–
804.
Zhang, F., Pan, T., and Wang, B. (2022a). Semi-supervised
object detection with adaptive class-rebalancing self-
training. In AAAI conference on artificial intelligence,
volume 36, pages 3252–3261.
Zhang, Y., Zhang, X., Li, J., Qiu, R. C., Xu, H., and Tian,
Q. (2022b). Semi-supervised contrastive learning with
similarity co-calibration. IEEE Transactions on Mul-
timedia, 25:1749–1759.
Zhou, Y., Hu, D., Li, C., and He, W. (2023). Uwyolox: An
underwater object detection framework based on im-
age enhancement and semi-supervised learning. In In-
ternational Conference on Neural Computing for Ad-
vanced Applications, pages 32–45. Springer.
Zurowietz, M. and Nattkemper, T. W. (2020). Unsupervised
knowledge transfer for object detection in marine en-
vironmental monitoring and exploration. IEEE Ac-
cess, 8:143558–143568.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
244