versatility and effectiveness in capturing intricate
signal characteristics, offering a valuable tool for both
clinical and research purposes. The results, as
presented through various graphical representations,
highlight Semani’s potential to improve the precision
and understanding of biomedical signal analysis,
paving the way for enhanced diagnostic tools and
further advancements in the field.
REFERENCES
Engels, F., Hedenrech, P., Wntermantel, M., Stacker, L.,
Al Kad, M., & Zoubr, A. M. (2021). Automotve
Radar Sgnal Processng: Research Drectons and
Practcal Challenges. IEEE Journal of Selected Topcs
n Sgnal Processng, 15(4), 865-878. https://do.org/
10.1109/JSTSP.2021.3063666
Kamble, K., & Sengupta, J. (2023). A comprehensve
survey on emoton recognton based on
electroencephalograph (EEG) sgnals. Multmeda
Tools and Applcatons, 82(18), 27269-27304.
https://do.org/10.1007/s11042-023-14489-9
Kazem Lchaee, F., Salar, A., Jall, J., Bekmohammad
Dalvand, S., Roshanfekr Rad, M., & Mojarad, M.
(2024). Advancements n Artfcal Intellgence for
ECG Sgnal Analyss and Arrhythma Detecton: A
Revew. Internatonal Journal of Cardovascular
Practce,8(2).
https://do.org/10.5812/ntjcardovascpract-143437
Kumar, R., Verma, A. R., Gupta, B., & Kumar, S. (2021).
Dual-Tree Sparse Decomposton of DWT Flters for
ECG Sgnal Compresson and HRV Analyss.
Augmented Human Research, 6(1), 3. https://do.org/
10.1007/s41133-020-00041-z
Long, J., Wang, X., Zhou, W., Zhang, J., Da, D., & Zhu, G.
(2021). A Comprehensve Revew of Sgnal Processng
and Machne Learnng Technologes for UHF PD
Detecton and Dagnoss (I): Preprocessng and
Localzaton Approaches. IEEE Access, 9, 69876-69904.
https://do.org/10.1109/ACCESS.2021.3077483
Mazlan, M. R., Sukor, A. S. A., Adom, A. H., &
Jamaluddn, R. (2024). Revew of analyss of EEG
sgnals for stress detecton. 040007. https://do.org/
10.1063/5.0181590
Melnda, M., Maulsa, O., Nabla, N. H., Yundar, Y., &
Enrko, I. K. A. (2023). Classfcaton of EEG Sgnal
usng Independent Component Analyss and Dscrete
Wavelet Transform based on Lnear Dscrmnant
Analyss. JOIV : Internatonal Journal on Informatcs
Vsualzaton, 7(3), 830-838. https://do.org/10.30630/
jov.7.3.1219
Neupane, D., & Seok, J. (2020). A Revew on Deep
Learnng-Based Approaches for Automatc Sonar
Target Recognton. Electroncs, 9(11), 1972.
https://do.org/10.3390/electroncs9111972
Pham, Q.-V., Nguyen, N. T., Huynh-The, T., Bao Le, L.,
Lee, K., & Hwang, W.-J. (2021). Intellgent Rado
Sgnal Processng: A Survey. IEEE Access, 9, 83818-
83850.
https://do.org/10.1109/ACCESS.2021.3087136
R. Martn. (2023). Robustfed prncpal component
analyss for feature selecton n EEG sgnal
classfcaton. Internatonal Journal of Systematc
Innovaton, 7(5). https://do.org/10.6977/IJoSI.2023
03_7(5).0004
Ramírez-Espnosa, P., Morales-Jmenez, D., & Wong, K.-
K. (2024). A New Spatal Block-Correlaton Model for
Flud Antenna Systems. IEEE Transactons on Wreless
Communcatons, 23(11), 15829-15843. https://do.org/
10.1109/TWC.2024.3434509
Rodrguez-Tapa, B., Soto, I., Martnez, D. M., & Arballo,
N. C. (2020). Myoelectrc Interfaces and Related
Applcatons: Current State of EMG Sgnal Processng–
A Systematc Revew. IEEE Access, 8, 7792-7805.
https://do.org/10.1109/ACCESS.2019.2963881
Ruan, H., Da, X., Chen, S., & Qu, X. (2022). Arrhythma
Classfcaton and Dagnoss Based on ECG Sgnal: A
Mult-Doman Collaboratve Analyss and Decson
Approach. Electroncs, 11(19), 3251. https://do.org/
10.3390/electroncs11193251
She, C., Cheng, P., L, A., & L, Y. (2021). Grand
Challenges n Sgnal Processng for Communcatons.
Fronters n Sgnal Processng, 1, 664331.
https://do.org/10.3389/frsp.2021.664331
We, Z., Qu, H., Jang, W., Han, K., Wu, H., & Feng, Z.
(2023). Iteratve Sgnal Processng for Integrated
Sensng and Communcaton Systems. IEEE
Transactons on Green Communcatons and
Networkng, 7(1), 401-412. https://do.org/10.1109/
TGCN.2023.3234825
Yn, X., Lu, F., Ca, R., Yang, X., Zhang, X., Nng, M., &
Shen, S. (2022). Research on Sesmc Sgnal Analyss
Based on Machne Learnng. Appled Scences, 12(16),
8389. https://do.org/10.3390/app12168389
J. Long, X. Wang, W. Zhou, J. Zhang, D. Da and G. Zhu,
"A Comprehensve Revew of Sgnal Processng and
Machne Learnng Technologes for UHF PD Detecton
and Dagnoss (I): Preprocessng and Localzaton
Approaches," n IEEE Access, vol. 9, pp. 69876-69904,
2021, do: 10.1109/ACCESS.2021.3077483.
Martn, J., “Nkola Tesla: How Energy, Frequences, and
Vbratons Shape Realty”, Amazon Dgtal Servces
LLC - KDP Prnt US, ISBN:9798408952731, 2022
Availability of Data and Materials: The datasets used
and analyzed in the current study are publicly available as
open-source data.
Conflict of Interests: The author declares that the
method presented in this study is subject to a patent
application under the author's name, which may have
potential commercial implications.