
B. A., Ceroni, J., Delgado, A., Matteo, O. D., Dusko,
A., Garg, T., Guala, D., Hayes, A., Hill, R., Ijaz,
A., Isacsson, T., Ittah, D., Jahangiri, S., Jain, P.,
Jiang, E., Khandelwal, A., Kottmann, K., Lang, R. A.,
Lee, C., Loke, T., Lowe, A., McKiernan, K., Meyer,
J. J., Monta
˜
nez-Barrera, J. A., Moyard, R., Niu, Z.,
O’Riordan, L. J., Oud, S., Panigrahi, A., Park, C.-
Y., Polatajko, D., Quesada, N., Roberts, C., S
´
a, N.,
Schoch, I., Shi, B., Shu, S., Sim, S., Singh, A.,
Strandberg, I., Soni, J., Sz
´
ava, A., Thabet, S., Vargas-
Hern
´
andez, R. A., Vincent, T., Vitucci, N., Weber, M.,
Wierichs, D., Wiersema, R., Willmann, M., Wong,
V., Zhang, S., and Killoran, N. (2022). Pennylane:
Automatic differentiation of hybrid quantum-classical
computations.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C.,
Endo, S., Fujii, K., McClean, J. R., Mitarai, K.,
Yuan, X., Cincio, L., and Coles, P. J. (2021). Vari-
ational quantum algorithms. Nature Reviews Physics,
3(9):625–644.
Cirq developers (2023). Cirq.
Cross, A. W., Bishop, L. S., Smolin, J. A., and Gambetta,
J. M. (2017). Open quantum assembly language.
Farhi, E., Goldstone, J., Gutmann, S., and Zhou, L. (2022).
The Quantum Approximate Optimization Algorithm
and the Sherrington-Kirkpatrick Model at Infinite
Size. Quantum, 6:759.
Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.
K
¨
olle, M., Giovagnoli, A., Stein, J., Mansky, M. B.,
Hager, J., and Linnhoff-Popien, C. (2023a). Improv-
ing convergence for quantum variational classifiers us-
ing weight re-mapping.
K
¨
olle, M., Giovagnoli, A., Stein, J., Mansky, M. B., Hager,
J., Rohe, T., M
¨
uller, R., and Linnhoff-Popien, C.
(2023b). Weight re-mapping for variational quantum
algorithms.
K
¨
olle, M., Stenzel, G., Stein, J., Zielinski, S., Ommer, B.,
and Linnhoff-Popien, C. (2024). Quantum denoising
diffusion models.
Nielsen, M. A. and Chuang, I. L. (2001). Quantum com-
putation and quantum information. Phys. Today,
54(2):60.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran As-
sociates, Inc.
Preskill, J. (2018). Quantum computing in the NISQ era
and beyond. Quantum, 2:79.
Qiskit contributors (2023). Qiskit: An open-source frame-
work for quantum computing.
Rebentrost, P., Mohseni, M., and Lloyd, S. (2014). Quan-
tum support vector machine for big data classification.
Physical review letters, 113(13):130503.
Schuld, M. and Petruccione, F. (2021). Machine learning
with quantum computers. Springer.
Stamatopoulos, N., Egger, D. J., Sun, Y., Zoufal, C., Iten,
R., Shen, N., and Woerner, S. (2020). Option pricing
using quantum computers. Quantum, 4:291.
Wang, H., Ding, Y., Gu, J., Li, Z., Lin, Y., Pan, D. Z.,
Chong, F. T., and Han, S. (2022). Quantumnas:
Noise-adaptive search for robust quantum circuits. In
The 28th IEEE International Symposium on High-
Performance Computer Architecture (HPCA-28).
Wille, R., Van Meter, R., and Naveh, Y. (2019). IBM’s
qiskit tool chain: Working with and developing for
real quantum computers. In 2019 Design, Automa-
tion and Test in Europe Conference and Exhibition
(DATE), pages 1234–1240.
Zoufal, C., Lucchi, A., and Woerner, S. (2019). Quantum
generative adversarial networks for learning and load-
ing random distributions. npj Quantum Information,
5(1):103.
APPENDIX
Execution Time
In Figure 3, we show the minimum execution times of
the simulators for the same circuits, employing a full
forward and backward pass. The results are consis-
tent with the mean execution times shown in Figure 1,
showing Qandle as the fastest simulator, followed by
TorchQuantum and PennyLane. Minimal execution
times are more effected by other system processes and
caching mechanisms, and are therefore less reliable to
reproduce.
Figure 3: Simulation results for the network, showing only
the fastest run.
Qandle: Accelerating State Vector Simulation Using Gate-Matrix Caching and Circuit Splitting
723