
camera technology and sophisticated gas plume detec-
tion computer algorithm. Proceedings - SPE Annual
Technical Conference and Exhibition, 6:4183–4193.
Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T.,
Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon,
S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb,
B. K., Lauvaux, T., Maasakkers, J. D., Marchese,
A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson,
A. L., Shepson, P. B., Sweeney, C., Townsend-Small,
A., Wofsy, S. C., and Hamburg, S. P. (2018). Assess-
ment of methane emissions from the u.s. oil and gas
supply chain. Science, 361:186–188.
Brandt, A. R., Heath, G. A., and Cooley, D. (2016).
Methane leaks from natural gas systems follow ex-
treme distributions. Environmental Science and Tech-
nology, 50:12512–12520.
Brehm, P. (2019). Natural gas prices, electric generation
investment, and greenhouse gas emissions. Resource
and Energy Economics, 58:101106.
Ciregan, D., Meier, U., and Schmidhuber, J. (2012). Multi-
column deep neural networks for image classification.
Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition,
pages 3642–3649.
EIA (2024). U.s. energy facts explained - consumption
and production - u.s. energy information administra-
tion (eia).
FAQs (2024). Frequently asked questions (faqs) - u.s. en-
ergy information administration (eia).
Farneb
¨
ack, G. (2003). Two-frame motion estimation based
on polynomial expansion. In Bigun, J. and Gus-
tavsson, T., editors, Image Analysis, pages 363–370,
Berlin, Heidelberg. Springer Berlin Heidelberg.
Fire (2024). Fire and smoke dataset — kaggle.
FLIR (2024). Flir conservator.
Frizzi, S., Kaabi, R., Bouchouicha, M., Ginoux, J. M.,
Moreau, E., and Fnaiech, F. (2016). Convolutional
neural network for video fire and smoke detection.
IECON Proceedings (Industrial Electronics Confer-
ence), pages 877–882.
GWP (2023). Understanding global warming potentials —
us epa.
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. R. (2012). Improving neural
networks by preventing co-adaptation of feature de-
tectors.
Hsu, Y.-C., Dille, P., Sargent, R., and Nourbakhsh, I.
(2018). Industrial smoke detection and visualization.
Khallaghi, N., Hanak, D. P., and Manovic, V. (2020).
Techno-economic evaluation of near-zero co2 emis-
sion gas-fired power generation technologies: A re-
view. Journal of Natural Gas Science and Engineer-
ing, 74:103095.
Li, N., Wang, J., Wu, L., and Bentley, Y. (2021). Predict-
ing monthly natural gas production in china using a
novel grey seasonal model with particle swarm opti-
mization. Energy, 215:119118.
Method21 (2023). Method 21 - volatile organic compound
leaks — us epa.
Nair, V. and Hinton, G. (2010). Rectified linear units im-
prove restricted boltzmann machines vinod nair. vol-
ume 27, pages 807–814.
OpenCV (2024). Opencv: Background subtraction.
Ravikumar, A. P., Wang, J., and Brandt, A. R. (2017).
Are optical gas imaging technologies effective for
methane leak detection? Environmental Science and
Technology, 51:718–724.
Ravikumar, A. P., Wang, J., McGuire, M., Bell, C. S., Zim-
merle, D., and Brandt, A. R. (2018). ”good versus
good enough?” empirical tests of methane leak detec-
tion sensitivity of a commercial infrared camera. En-
vironmental Science and Technology, 52:2368–2374.
Ruder, S. (2016). An overview of gradient descent opti-
mization algorithms.
Shakya, S., Li, B., and Etienne, X. (2022). Shale revolution,
oil and gas prices, and drilling activities in the united
states. Energy Economics, 108:105877.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 07-
12-June-2015:1–9.
Vaughn, T. L., Bell, C. S., Pickering, C. K., Schwiet-
zke, S., Heath, G. A., P
´
etron, G., Zimmerle, D. J.,
Schnell, R. C., and Nummedal, D. (2018). Temporal
variability largely explains top-down/bottom-up dif-
ference in methane emission estimates from a natural
gas production region. Proceedings of the National
Academy of Sciences of the United States of America,
115:11712–11717.
Ye, W., Zhao, J., Wang, S., Wang, Y., Zhang, D., and Yuan,
Z. (2015). Dynamic texture based smoke detection
using surfacelet transform and hmt model. Fire Safety
Journal, 73:91–101.
Yuan, M., Barron, A. R., Selin, N. E., al, Frank, S., Havl
´
ık,
P., Tabeau, A., Ravikumar, A. P., and Brandt, A. R.
(2017). Designing better methane mitigation poli-
cies: the challenge of distributed small sources in the
natural gas sector. Environmental Research Letters,
12:044023.
Zivkovic, Z. and Heijden, F. V. D. (2006). Efficient adap-
tive density estimation per image pixel for the task of
background subtraction. Pattern Recognition Letters,
27:773–780.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
830