
whole-space trap space of the BN. We also showed a
more general characterization of complete trap spaces
in BNs. We then applied this connection to the graphi-
cal analysis of AFs: showing graphical conditions for
properties on preferred, stable, and complete exten-
sions. In particular, we showed new upper bounds
based on positive feedback vertex sets for the num-
bers of stable, preferred, and complete extensions. An
advantage of the above approach is that we only need
to focus on dynamical properties of BNs when study-
ing extensions in AFs, openning the great potential
to obtain more improved theoretical results regarding
the graphical analysis of AFs.
REFERENCES
Aracena, J. (2008). Maximum number of fixed points
in regulatory Boolean networks. Bull. Math. Biol.,
70(5):1398–1409.
Azpeitia, E., Guti
´
errez, S. M., Rosenblueth, D. A., and
Zapata, O. (2024). Bridging abstract dialectical ar-
gumentation and Boolean gene regulation. CoRR,
abs/2407.06106.
Baroni, P., Toni, F., and Verheij, B. (2020). On the ac-
ceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-
person games: 25 years later. Argument Comput.,
11(1-2):1–14.
Baumann, R., Dvor
´
ak, W., Linsbichler, T., Strass, H., and
Woltran, S. (2014). Compact argumentation frame-
works. In Proc. of ECAI, pages 69–74. IOS Press.
Baumann, R. and Strass, H. (2013). On the maximal and av-
erage numbers of stable extensions. In Proc. of TAFA,
pages 111–126. Springer.
Baumann, R. and Strass, H. (2015). Open problems in ab-
stract argumentation. In Advances in Knowledge Rep-
resentation, Logic Programming, and Abstract Argu-
mentation - Essays Dedicated to Gerhard Brewka on
the Occasion of His 60th Birthday, pages 325–339.
Springer.
Baumann, R. and Ulbricht, M. (2021). On cycles, attackers
and supporters - A contribution to the investigation of
dynamics in abstract argumentation. In Proc. of IJ-
CAI, pages 1780–1786. ijcai.org.
Caminada, M., S
´
a, S., Alc
ˆ
antara, J. F. L., and Dvor
´
ak, W.
(2015). On the equivalence between logic program-
ming semantics and argumentation semantics. Int. J.
Approx. Reason., 58:87–111.
Caminada, M. W. A. and Gabbay, D. M. (2009). A logical
account of formal argumentation. Stud Logica, 93(2-
3):109–145.
Charwat, G., Dvor
´
ak, W., Gaggl, S. A., Wallner, J. P., and
Woltran, S. (2015). Methods for solving reasoning
problems in abstract argumentation - A survey. Artif.
Intell., 220:28–63.
Coste-Marquis, S., Devred, C., and Marquis, P. (2005).
Symmetric argumentation frameworks. In Proc. of
ECSQARU, pages 317–328. Springer.
Dewoprabowo, R., Fichte, J. K., Gorczyca, P. J., and
Hecher, M. (2022). A practical account into count-
ing Dung’s extensions by dynamic programming. In
Proc. of LPNMR, pages 387–400. Springer.
Dimopoulos, Y., Dvor
´
ak, W., and K
¨
onig, M. (2024). Con-
necting abstract argumentation and Boolean networks.
In Proc. of COMMA, pages 85–96. IOS Press.
Dimopoulos, Y. and Torres, A. (1996). Graph theoreti-
cal structures in logic programs and default theories.
Theor. Comput. Sci., 170(1-2):209–244.
Dung, P. M. (1995). On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artif. Intell.,
77(2):321–358.
Dunne, P. E. (2007). Computational properties of argument
systems satisfying graph-theoretic constraints. Artif.
Intell., 171(10-15):701–729.
Dunne, P. E., Dvor
´
ak, W., Linsbichler, T., and Woltran, S.
(2015). Characteristics of multiple viewpoints in ab-
stract argumentation. Artif. Intell., 228:153–178.
Elaroussi, M., Nourine, L., Radjef, M. S., and Vilmin, S.
(2023). On the preferred extensions of argumentation
frameworks: Bijections with naive sets. Inf. Process.
Lett., 181:106354.
Gaspers, S. and Li, R. (2019). Enumeration of preferred
extensions in almost oriented digraphs. In Proc. of
MFCS, pages 74:1–74:15. Schloss Dagstuhl - Leibniz-
Zentrum f
¨
ur Informatik.
Heyninck, J., Knorr, M., and Leite, J. (2024). Abstract di-
alectical frameworks are Boolean networks. In Do-
daro, C., Gupta, G., and Martinez, M. V., editors,
Proc. of LPNMR, pages 98–111. Springer.
Kauffman, S. A. (1969). Metabolic stability and epigenesis
in randomly constructed genetic nets. J. Theor. Biol.,
22(3):437–467.
Klarner, H., Bockmayr, A., and Siebert, H. (2015). Com-
puting maximal and minimal trap spaces of Boolean
networks. Nat. Comput., 14(4):535–544.
Kr
¨
oll, M., Pichler, R., and Woltran, S. (2017). On the com-
plexity of enumerating the extensions of abstract ar-
gumentation frameworks. In Proc. of IJCAI, pages
1145–1152. ijcai.org.
Nieves, J. C., Cort
´
es, U., and Osorio, M. (2008). Preferred
extensions as stable models. Theory Pract. Log. Pro-
gram., 8(4):527–543.
Nouioua, F. and Risch, V. (2012). A reconstruction of
abstract argumentation admissible semantics into de-
faults and answer sets programming. In Proc. of
ICAART, pages 237–242. SciTePress.
Obiedkov, S. and Sertkaya, B. (2023). Computing stable
extensions of argumentation frameworks using formal
concept analysis. In Proc. of JELIA, pages 176–191.
Springer.
Paulev
´
e, L. and Richard, A. (2012). Static analysis of
Boolean networks based on interaction graphs: a sur-
vey. Electron. Notes Theor. Comput. Sci., 284:93–104.
Pollock, J. L. (1987). Defeasible reasoning. Cogn. Sci.,
11(4):481–518.
Graphical Analysis of Abstract Argumentation Frameworks via Boolean Networks
755