
H., Chawla, S., and Madden, S. (2018). Roadrun-
ner: improving the precision of road network infer-
ence from gps trajectories. In Proceedings of the 26th
ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, pages 3–
12.
He, T., Bao, J., Li, R., Ruan, S., Li, Y., Song, L., He, H.,
and Zheng, Y. (2020). What is the human mobility in
a new city: Transfer mobility knowledge across cities.
In Proceedings of The Web Conference 2020, WWW
’20, page 1355–1365, New York, NY, USA. Associa-
tion for Computing Machinery.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.
Karagiorgou, S. and Pfoser, D. (2012). On vehicle tracking
data-based road network generation. In Proceedings
of the 20th International Conference on Advances in
Geographic Information Systems, pages 89–98.
Li, M., Tong, P., Li, M., Jin, Z., Huang, J., and Hua, X.-S.
(2021). Traffic flow prediction with vehicle trajecto-
ries. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 35, pages 294–302.
Liu, L., Yang, Z., Li, G., Wang, K., Chen, T., and Lin, L.
(2022). Aerial images meet crowdsourced trajectories:
a new approach to robust road extraction. IEEE trans-
actions on neural networks and learning systems.
Prabowo, A., Koniusz, P., Shao, W., and Salim, F. D.
(2019). Coltrane: Convolutional trajectory network
for deep map inference. In Proceedings of the
6th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transporta-
tion, pages 21–30.
Punn, N. S. and Agarwal, S. (2020). Inception u-net ar-
chitecture for semantic segmentation to identify nu-
clei in microscopy cell images. ACM Transactions on
Multimedia Computing, Communications, and Appli-
cations (TOMM), 16(1):1–15.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. CoRR, abs/1505.04597.
Roy, A., Lanco Bertrand, S., and Fablet, R. (2022). Deep
inference of seabird dives from gps-only records: Per-
formance and generalization properties. PLoS Com-
putational Biology, 18(3):e1009890.
Ruan, S., Bao, J., Liang, Y., Li, R., He, T., Meng, C., Li,
Y., Wu, Y., and Zheng, Y. (2020a). Dynamic public
resource allocation based on human mobility predic-
tion. Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies, 4(1):1–22.
Ruan, S., Long, C., Bao, J., Li, C., Yu, Z., Li, R., Liang, Y.,
He, T., and Zheng, Y. (2020b). Learning to generate
maps from trajectories. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 34(01):890–897.
Stanojevic, R., Abbar, S., Thirumuruganathan, S., Chawla,
S., Filali, F., and Aleimat, A. (2018). Robust road
map inference through network alignment of trajecto-
ries. In Proceedings of the 2018 SIAM International
Conference on Data Mining, pages 135–143. SIAM.
Sun, T., Di, Z., Che, P., Liu, C., and Wang, Y. (2019). Lever-
aging crowdsourced gps data for road extraction from
aerial imagery. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 7509–7518.
Tveite, H. (2015–2019). The QGIS thin greyscale im-
age to skeleton plugin. http://plugins.qgis.org/plugins/
ThinGreyscale/.
Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao,
Y., Liu, D., Mu, Y., Tan, M., Wang, X., et al. (2020).
Deep high-resolution representation learning for vi-
sual recognition. IEEE transactions on pattern analy-
sis and machine intelligence, 43(10):3349–3364.
Wu, H., Zhang, H., Zhang, X., Sun, W., Zheng, B., and
Jiang, Y. (2020). Deepdualmapper: A gated fusion
network for automatic map extraction using aerial im-
ages and trajectories. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
1037–1045.
Yang, X., Tang, L., Ren, C., Chen, Y., Xie, Z., and Li,
Q. (2020). Pedestrian network generation based on
crowdsourced tracking data. International Journal of
Geographical Information Science, 34(5):1051–1074.
Zhang, C., Li, Y., Xiang, L., Jiao, F., Wu, C., and Li,
S. (2021). Generating road networks for old down-
town areas based on crowd-sourced vehicle trajecto-
ries. Sensors, 21(1):235.
Zhang, J., Hu, Q., Li, J., and Ai, M. (2020). Learning
from gps trajectories of floating car for cnn-based ur-
ban road extraction with high-resolution satellite im-
agery. IEEE Transactions on Geoscience and Remote
Sensing, 59(3):1836–1847.
Zheng, R., Liu, Q., Rao, W., Yuan, M., Zeng, J., and Jin,
Z. (2017). Topic model-based road network infer-
ence from massive trajectories. In 2017 18th IEEE In-
ternational Conference on Mobile Data Management
(MDM), pages 246–255. IEEE.
Zhou, L., Zhang, C., and Wu, M. (2018). D-linknet: Linknet
with pretrained encoder and dilated convolution for
high resolution satellite imagery road extraction. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops, pages 182–
186.
Zhou, Y., Wang, J., and Zhan, Y. (2022). An urban road
extraction method based on trajectory clustering. In
IGARSS 2022-2022 IEEE International Geoscience
and Remote Sensing Symposium, pages 1268–1271.
IEEE.
Zhu, Q., Zhang, Y., Wang, L., Zhong, Y., Guan, Q., Lu,
X., Zhang, L., and Li, D. (2021). A global context-
aware and batch-independent network for road extrac-
tion from vhr satellite imagery. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 175:353–365.
Deep Neural Network Architectures for Advanced Hiking Map Generation
541