Falk, R. F., & Miller, N. B. (1992). A primer for soft
modeling. University of Akron Press.
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural
Equation Models with unobservable variables and
measurement error. Journal of Marketing Research,
18(1), 39–50.
Fritsche, I., Barth, M., Jugert, P., Masson, T., & Reese, G.
(2018). A Social Identity Model of Pro-Environmental
Action (SIMPEA). Psychological Review, 125(2), 245–
269. https://doi.org/10.1037/rev0000090
Gächter, S., Starmer, C., & Tufano, F. (2015). Measuring
the Closeness of Relationships: A Comprehensive
Evaluation of the „Inclusion of the Other in the Self“
Scale. PLOS ONE, 10(6), e0129478. https://doi.org/
10.1371/journal.pone.0129478
Gimpel, H., Graf, V., & Graf-Drasch, V. (2020). A
comprehensive model for individuals’ acceptance of
smart energy technology – A meta-analysis. Energy
Policy, 138, 111196. https://doi.org/10.1016/
j.enpol.2019.111196
Girod, B., Mayer, S., & Nägele, F. (2017). Economic versus
belief-based models: Shedding light on the adoption of
novel green technologies. Energy Policy, 101, 415–
426. https://doi.org/10.1016/j.enpol.2016.09.065
Göckeritz, S., Schultz, P. W., Rendón, T., Cialdini, R. B.,
Goldstein, N. J., & Griskevicius, V. (2009). Descriptive
normative beliefs and conservation behavior: The
moderating roles of personal involvement and
injunctive normative beliefs. European Journal of
Social Psychology, n/a-n/a. https://doi.org/10.1002/
ejsp.643
Große-Kreul, F. (2022). What will drive household
adoption of smart energy? Insights from a consumer
acceptance study in Germany. Utilities Policy, 75,
101333. https://doi.org/10.1016/j.jup.2021.101333
Gumz, J., Fettermann, D. C., Sant’Anna, Â. M. O., &
Tortorella, G. L. (2022). Social Influence as a Major
Factor in Smart Meters’ Acceptance: Findings from
Brazil. Results in Engineering, 15, 100510.
https://doi.org/10.1016/j.rineng.2022.100510
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M.,
Danks, N. P., & Ray, S. (2021). An Introduction to
Structural Equation Modeling. In J. F. Hair Jr., G. T. M.
Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, & S. Ray
(Hrsg.), Partial Least Squares Structural Equation
Modeling (PLS-SEM) Using R: A Workbook (S. 1–29).
Springer International Publishing. https://doi.org/
10.1007/978-3-030-80519-7_1
Haji Hosseinloo, A., Ryzhov, A., Bischi, A., Ouerdane, H.,
Turitsyn, K., & Dahleh, M. A. (2020). Data-driven
control of micro-climate in buildings: An event-
triggered reinforcement learning approach. Applied
Energy, 277, 115451. https://doi.org/10.1016/
j.apenergy.2020.115451
Hamann, K. R. S., & Reese, G. (2020). My Influence on the
World (of Others): Goal Efficacy Beliefs and Efficacy
Affect Predict Private, Public, and Activist Pro‐
environmental Behavior. Journal of Social Issues,
76(1), 35–53. https://doi.org/10.1111/josi.12369
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new
criterion for assessing discriminant validity in variance-
based structural equation modeling. Journal of the
Academy of Marketing Science, 43(1), 115–135.
https://doi.org/10.1007/s11747-014-0403-8
Li, W., Yigitcanlar, T., Erol, I., & Liu, A. (2021).
Motivations, barriers and risks of smart home adoption:
From systematic literature review to conceptual
framework. Energy Research & Social Science, 80,
102211. https://doi.org/10.1016/j.erss.2021.102211
Lu, J., Sookoor, T., Srinivasan, V., Gao, G., Holben, B.,
Stankovic, J., Field, E., & Whitehouse, K. (2010). The
smart thermostat: Using occupancy sensors to save
energy in homes. Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems,
211–224. https://doi.org/10.1145/1869983.1870005
Malekpour Koupaei, D., Song, T., Cetin, K. S., & Im, J.
(2020). An assessment of opinions and perceptions of
smart thermostats using aspect-based sentiment
analysis of online reviews. Building and Environment,
170, 106603. https://doi.org/10.1016/
j.buildenv.2019.106603
Mamonov, S., & Koufaris, M. (2020). Fulfillment of
higher-order psychological needs through technology:
The case of smart thermostats. International Journal of
Information Management, 52, 102091. https://doi.org/
10.1016/j.ijinfomgt.2020.102091
Marikyan, D., Papagiannidis, S., & Alamanos, E. (2019). A
systematic review of the smart home literature: A user
perspective. Technological Forecasting and Social
Change, 138, 139–154. https://doi.org/10.1016/
j.techfore.2018.08.015
McDonald, R. P. (1999). Test Theory: A Unified Treatment
(1st ed.). Psychology Press. https://doi.org/10.4324/
9781410601087
Nordhoff, S., Madigan, R., Van Arem, B., Merat, N., &
Happee, R. (2021). Interrelationships among predictors
of automated vehicle acceptance: A structural equation
modelling approach. Theoretical Issues in Ergonomics
Science, 22(4), 383–408. https://doi.org/10.1080/
1463922X.2020.1814446
Park, H. S., & Smith, S. W. (2007). Distinctiveness and
Influence of Subjective Norms, Personal Descriptive
and Injunctive Norms, and Societal Descriptive and
Injunctive Norms on Behavioral Intent: A Case of Two
Behaviors Critical to Organ Donation. Human
Communication Research, 33(2), 194–218.
https://doi.org/10.1111/j.1468-2958.2007.00296.x
Rivis, A., & Sheeran, P. (2003). Descriptive norms as an
additional predictor in the theory of planned behaviour:
A meta-analysis. Current Psychology, 22(3), 218–233.
https://doi.org/10.1007/s12144-003-1018-2
Rogers, E. M. (2003). Diffusion of innovations/everett m.
Rogers. NY: Simon and Schuster, 576.
Seebauer, S. (2018). The psychology of rebound effects:
Explaining energy efficiency rebound behaviours with
electric vehicles and building insulation in Austria.
Energy Research & Social Science, 46, 311–320.
https://doi.org/10.1016/j.erss.2018.08.006