
the Coordenac¸
˜
ao de Aperfeic¸oamento de Pessoal de
N
´
ıvel Superior - Brazil (CAPES) - Finance Code 001.
REFERENCES
Barbosa, G., Moreira, L., de Sousa, P. M., Moreira, R.,
and Backes, A. (2024). Optimization and Learning
Rate Influence on Breast Cancer Image Classification.
In Proceedings of the 19th International Joint Con-
ference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 3: VIS-
APP, pages 792–799. INSTICC, SciTePress.
Calvo-Zaragoza, J., Rico-Juan, J. R., and Gallego, A.-J.
(2020). Ensemble classification from deep predic-
tions with test data augmentation. Soft Computing,
24(2):1423–1433.
da Silva, M., Rodrigues, L., and Mari, J. F. (2020). Op-
timizing data augmentation policies for convolutional
neural networks based on classification of sickle cells.
In Anais do XVI Workshop de Vis
˜
ao Computacional,
pages 46–51, Porto Alegre, RS, Brasil. SBC.
Deng, J., Dong, W., Socher, R., L, L., Li, K., and Fei-Fei,
L. (2009). ImageNet: A large-scale hierarchical im-
age database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, Mi-
ami, FL, USA. IEEE.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2021). An image is worth 16x16 words: Trans-
formers for image recognition at scale. In Interna-
tional Conference on Learning Representations.
Garcea, F., Serra, A., Lamberti, F., and Morra, L. (2023).
Data augmentation for medical imaging: A systematic
literature review. Computers in Biology and Medicine,
152:106391.
Gautam, A. (2023). Recent advancements of deep learn-
ing in detecting breast cancer: a survey. Multimedia
Systems, 29(3):917–943.
Goceri, E. (2023). Comparison of the impacts of der-
moscopy image augmentation methods on skin cancer
classification and a new augmentation method with
wavelet packets. International Journal of Imaging
Systems and Technology, 33(5):1727–1744.
Gupta, V., Vasudev, M., Doegar, A., and Sambyal, N.
(2021). Breast cancer detection from histopathol-
ogy images using modified residual neural net-
works. Biocybernetics and Biomedical Engineering,
41(4):1272–1287.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Jiahao, Z., Jiang, Y., Huang, R., and Shi, J. (2021).
Efficientnet-based model with test time augmentation
for cancer detection. In 2021 IEEE 2nd International
Conference on Big Data, Artificial Intelligence and
Internet of Things Engineering (ICBAIE), pages 548–
551.
Kandel, I. and Castelli, M. (2021). Improving convolu-
tional neural networks performance for image clas-
sification using test time augmentation: a case study
using mura dataset. Health Information Science and
Systems, 9(1):33.
Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning,
J., Cao, Y., Zhang, Z., Dong, L., Wei, F., and Guo, B.
(2022). Swin transformer v2: Scaling up capacity and
resolution. In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
11999–12009.
M
¨
uller, D., Soto-Rey, I., and Kramer, F. (2022). An analysis
on ensemble learning optimized medical image clas-
sification with deep convolutional neural networks.
IEEE Access, 10:66467–66480.
Nanni, L., Paci, M., Brahnam, S., and Lumini, A. (2021).
Comparison of different image data augmentation ap-
proaches. Journal of Imaging, 7(12).
Nguyen, C. P., Hoang Vo, A., and Nguyen, B. T. (2019).
Breast Cancer Histology Image Classification using
Deep Learning. In 2019 19th International Sympo-
sium on Communications and Information Technolo-
gies (ISCIT), pages 366–370.
Oza, P., Sharma, P., and Patel, S. (2024). Breast lesion clas-
sification from mammograms using deep neural net-
work and test-time augmentation. Neural Computing
and Applications, 36(4):2101–2117.
Shanmugam, D., Blalock, D., Balakrishnan, G., and Guttag,
J. (2021). Better aggregation in test-time augmenta-
tion. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 1194–1203.
Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. Journal
of Big Data, 6(1):60.
Spanhol, F. A., Oliveira, L. S., Cavalin, P. R., Petitjean, C.,
and Heutte, L. (2017). Deep features for breast cancer
histopathological image classification. In 2017 IEEE
International Conference on Systems, Man, and Cy-
bernetics (SMC), pages 1868–1873. IEEE.
Spanhol, F. A., Oliveira, L. S., Petitjean, C., and Heutte,
L. (2016). A Dataset for Breast Cancer Histopatho-
logical Image Classification. IEEE Transactions on
Biomedical Engineering, 63(7):1455–1462.
Valero-Mas, J. J., Gallego, A. J., and Rico-Juan, J. R.
(2024). An overview of ensemble and feature learn-
ing in few-shot image classification using siamese
networks. Multimedia Tools and Applications,
83(7):19929–19952.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
768