
Bandara, W. G. C., Patel, N., Gholami, A., Nikkhah, M.,
Agrawal, M., and Patel, V. M. (2023). Adamae:
Adaptive masking for efficient spatiotemporal learn-
ing with masked autoencoders. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14507–14517.
Ding, S., Gao, Z., Wang, J., Lu, M., and Shi, J. (2023).
Fractal graph convolutional network with mlp-mixer
based multi-path feature fusion for classification of
histopathological images. Expert Systems with Appli-
cations, 212:118793.
Doersch, C. and Zisserman, A. (2017). Multi-task self-
supervised visual learning. In Proceedings of the
IEEE international conference on computer vision,
pages 2051–2060.
Falconer, K. (2013). Fractal geometry: mathematical foun-
dations and applications. John Wiley & Sons.
Florindo, J. B. (2023). Renyi entropy analysis of a deep con-
volutional representation for texture recognition. Ap-
plied Soft Computing, 149:110974.
Florindo, J. B. and Neckel, A. (2023). A randomized net-
work approach to multifractal texture descriptors. In-
formation Sciences, 648:119544.
He, K., Chen, X., Xie, S., Li, Y., Doll
´
ar, P., and Girshick,
R. (2022). Masked autoencoders are scalable vision
learners. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
16000–16009.
Krishnan, R., Rajpurkar, P., and Topol, E. J. (2022). Self-
supervised learning in medicine and healthcare. Na-
ture Biomedical Engineering, 6(12):1346–1352.
Li, G., Zheng, H., Liu, D., Wang, C., Su, B., and Zheng,
C. (2022). Semmae: Semantic-guided masking for
learning masked autoencoders. Advances in Neural
Information Processing Systems, 35:14290–14302.
Manzari, O. N., Ahmadabadi, H., Kashiani, H., Shokouhi,
S. B., and Ayatollahi, A. (2023). Medvit: a ro-
bust vision transformer for generalized medical image
classification. Computers in Biology and Medicine,
157:106791.
Mao, J., Guo, S., Yin, X., Chang, Y., Nie, B., and Wang,
Y. (2024). Medical supervised masked autoencoder:
Crafting a better masking strategy and efficient fine-
tuning schedule for medical image classification. Ap-
plied Soft Computing, page 112536.
Motwani, M. B. and Fadnavis, A. M. (2024). Fractal di-
mension analysis at implant site on cbct. International
Dental Journal, 74:S75.
R
´
enyi, A. (1961). On measures of entropy and informa-
tion. In Proceedings of the fourth Berkeley sympo-
sium on mathematical statistics and probability, vol-
ume 1: contributions to the theory of statistics, vol-
ume 4, pages 547–562. University of California Press.
Salat, H., Murcio, R., and Arcaute, E. (2017). Multifractal
methodology. Physica A: Statistical Mechanics and
its Applications, 473:467–487.
Sawano, S., Kodera, S., Setoguchi, N., Tanabe, K., Kushida,
S., Kanda, J., Saji, M., Nanasato, M., Maki, H., Fu-
jita, H., et al. (2024). Applying masked autoencoder-
based self-supervised learning for high-capability vi-
sion transformers of electrocardiographies. Plos one,
19(8):e0307978.
Swapnarekha, H., Nayak, J., Naik, B., and Pelusi, D.
(2024). A deep insight into intelligent fractal-based
image analysis with pattern recognition. In Intelligent
Fractal-Based Image Analysis, pages 3–32. Elsevier.
Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfis-
ter, H., and Ni, B. (2023). Medmnist v2-a large-scale
lightweight benchmark for 2d and 3d biomedical im-
age classification. Scientific Data, 10(1):41.
Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., and Xie,
P. (2020). Covid-ct-dataset: a ct scan dataset about
covid-19. arXiv preprint arXiv:2003.13865.
Yu, F., Liu, J., Shang, L., and Liu, D. (2022). Multifractal
analysis and stacked autoencoder-based feature learn-
ing method for multivariate processes monitoring. In
2022 41st Chinese Control Conference (CCC), pages
4185–4190. IEEE.
Zhang, Q., Wang, Y., and Wang, Y. (2022). How mask mat-
ters: Towards theoretical understandings of masked
autoencoders. Advances in Neural Information Pro-
cessing Systems, 35:27127–27139.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
776