
& Behavior, 41(1_suppl), 27S-33S.
https://doi.org/10.1177/1090198114537065
Béchard, P., & Ayala, O. M. (2024). Reducing
hallucination in structured outputs via Retrieval-
Augmented Generation.
https://doi.org/10.48550/ARXIV.2404.08189
Bengfort, B., Bilbro, R., Ojeda, T., & Bengfort, B. (with
Bilbro, R., & Ojeda, T.). (2018). Applied text analysis
with python: Enabling language-aware data products
with machine learning (First edition). O’Reilly.
Berwick, D. M., Nolan, T. W., & Whittington, J. (2008).
The Triple Aim: Care, Health, And Cost. Health
Affairs, 27(3), 759–769.
https://doi.org/10.1377/hlthaff.27.3.759
Bird, S., Klein, E., & Loper, E. (2009). Natural language
processing with Python. O’Reilly.
Bonnes, S. L. R., Strauss, T., Palmer, A. K., Hurt, R. T.,
Island, L., Goshen, A., Wang, L. Y. T., Kirkland, J. L.,
Bischof, E., & Maier, A. B. (2024). Establishing
healthy longevity clinics in publicly funded hospitals.
GeroScience. https://doi.org/10.1007/s11357-024-
01132-0
Chapman, P. (2000). CRISP-DM 1.0: Step-by-step data
mining guide. https://www.semanticscholar.org/paper/
CRISP-DM-1.0%3A-Step-by-step-data-mining-guide-
Chapman/54bad20bbc7938991bf34f86dde0babfbd2d5
a72
Cox, L. S., & Faragher, R. G. A. (2022). Linking
interdisciplinary and multiscale approaches to improve
healthspan—A new UK model for collaborative
research networks in ageing biology and clinical
translation. The Lancet Healthy Longevity, 3(5), e318–
e320. https://doi.org/10.1016/S2666-7568(22)00095-2
Fried, L. P., Wong, J. E.-L., & Dzau, V. (2022). A global
roadmap to seize the opportunities of healthy longevity.
Nature Aging, 1–4. https://doi.org/10.1038/s43587-
022-00332-7
Frow, P., & Payne, A. (2011). A stakeholder perspective of
the value proposition concept. European Journal of
Marketing, 45(1/2), 223–240.
https://doi.org/10.1108/03090561111095676
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., Wang, M., & Wang, H. (2023). Retrieval-
Augmented Generation for Large Language Models: A
Survey (Version 5). arXiv.
https://doi.org/10.48550/ARXIV.2312.10997
Giger, O.-F., Pfitzer, E., Mekniran, W., Gebhardt, H.,
Fleisch, E., Jovanova, M., & Kowatsch, T. (2024).
Collaboration and Innovation Patterns in Diabetes
Ecosystems.
https://doi.org/10.1101/2024.04.25.24306351
Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches
to Qualitative Content Analysis. Qualitative Health
Research, 15(9), 1277–1288.
https://doi.org/10.1177/1049732305276687
Huang, Y., & Huang, J. (2024). A Survey on Retrieval-
Augmented Text Generation for Large Language
Models (Version 2). arXiv.
https://doi.org/10.48550/ARXIV.2404.10981
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y.,
& Zhao, L. (2019). Latent Dirichlet allocation (LDA)
and topic modeling: Models, applications, a survey.
Multimedia Tools and Applications, 78(11), 15169–
15211. https://doi.org/10.1007/s11042-018-6894-4
Khurana, A. (2014). Bringing Big Data Systems to the
Cloud. IEEE Cloud Computing, 1(3), 72–75.
https://doi.org/10.1109/MCC.2014.47
Larose, D. T. (2015). Data Mining and Predictive Analytics
(1st ed). John Wiley & Sons, Incorporated.
McKinney, W. (2010). Data Structures for Statistical
Computing in Python. Scipy.
https://doi.org/10.25080/Majora-92bf1922-00a
Mekniran, W., Giger, O.-F., Fleisch, E., Kowatsch, T., &
Jovanova, M. (2024). The Longevity Landscape: Value
Creation for Healthy Aging.
https://doi.org/10.1101/2024.05.28.24308017
Mekniran, W., & Kowatsch, T. (2023). Scalable Business
Models in Digital Healthy Longevity: Lessons from
Top-Funded Digital Health Companies in 2022. 609–
615. https://doi.org/10.5220/0011778400003414
Mekniran, W., Kramer, J.-N., & Kowatsch, T. (2024).
Reimagining Preventive Care and Digital Health: A
Paradigm Shift in a Health Insurance’s Role. 852–858.
https://doi.org/10.5220/0012400300003657
National Academy of Medicine. (2022). Global Roadmap
for Healthy Longevity (p. 26144). National Academies
Press. https://doi.org/10.17226/26144
OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,
J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I.,
Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian,
M., Belgum, J., … Zoph, B. (2024). GPT-4 Technical
Report (arXiv:2303.08774). arXiv.
https://doi.org/10.48550/arXiv.2303.08774
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., &
Cournapeau, D. (2011). Scikit-learn: Machine Learning
in Python. MACHINE LEARNING IN PYTHON.
Silge, J., & Robinson, D. (2017). Text mining with R: A
tidy approach (First edition). O’Reilly.
Sharma, A., & Kaur, B. (2017). A Research Review on
Comparative Analysis of Data Mining Tools,
Techniques and Parameters. International Journal of
Advanced Research in Computer Science, 8(7), 523–
529. https://doi.org/10.26483/ijarcs.v8i7.4255
Valdez, D., Pickett, A. C., & Goodson, P. (2018). Topic
Modeling: Latent Semantic Analysis for the Social
Sciences. Social Science Quarterly, 99(5), 1665–1679.
https://doi.org/10.1111/ssqu.12528
Wasserman, S., & Faust, K. (1994). Social Network
Analysis: Methods and Applications. Cambridge
University Press.
https://doi.org/10.1017/CBO9780511815478
WHO. (2020). Decade of healthy ageing: Baseline report.
World Health Organization.
https://apps.who.int/iris/handle/10665/338677.
Scale-IT-up 2025 - Workshop on Scaling Up Care for Older Adults
1074