
posium (IV), 2013 IEEE, pages 1324–1329.
Berri, R. and Os
´
orio, F. (2018). A 3d vision system for de-
tecting use of mobile phones while driving. In 2018
International Joint Conference on Neural Networks
(IJCNN), pages 1–8.
Berri, R. A., Bruno, D. R., Borges, E., Lucca, G., and Oso-
rio, F. S. (2022). Adas classifier for driver monitoring
and driving qualification using both internal and ex-
ternal vehicle data. In Proceedings of the 17th Inter-
national Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications
(VISIGRAPP 2022) - Volume 4: VISAPP, pages 560–
567. INSTICC, SciTePress.
Bruno, D. R., Berri, R. A., Barbosa, F. M., and Os
´
orio, F. S.
(2023). Carina project: Visual perception systems
applied for autonomous vehicles and advanced driver
assistance systems (adas). IEEE Access, 11:69720–
69749.
Bruno, D. R. and Os
´
orio, F. S. (2023). Real-time pedestrian
detection and tracking system using deep learning and
kalman filter: Applications on embedded systems in
advanced driver assistance systems. In 2023 Latin
American Robotics Symposium (LARS), 2023 Brazil-
ian Symposium on Robotics (SBR), and 2023 Work-
shop on Robotics in Education (WRE), pages 549–
554.
Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T.,
Strecha, C., and Fua, P. (2012). Brief: Computing
a local binary descriptor very fast. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
34(7):1281–1298.
Camara, F., Bellotto, N., Cosar, S., Nathanael, D., Althoff,
M., Wu, J., Ruenz, J., Dietrich, A., and Fox, C. W.
(2020). Pedestrian models for autonomous driving
part I: low level models, from sensing to tracking.
CoRR, abs/2002.11669.
Chen, J., Zhao, P., Liang, H., and Mei, T. (2014). A
multiple attribute-based decision making model for
autonomous vehicle in urban environment. In 2014
IEEE Intelligent Vehicles Symposium Proceedings,
pages 480–485.
Chen, S., Hong, J., Zhang, T., Li, J., and Guan, Y. (2019).
Object detection using deep learning: Single shot de-
tector with a refined feature-fusion structure. In 2019
IEEE International Conference on Real-time Comput-
ing and Robotics (RCAR), pages 219–224.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.
Craye, C. and Karray, F. (2015). Driver distraction detec-
tion and recognition using rgb-d sensor. arXiv preprint
arXiv:1502.00250.
Dai, J., Teng, J., Bai, X., Shen, Z., and Xuan, D. (2010).
Mobile phone based drunk driving detection. In Per-
vasive Computing Technologies for Healthcare (Per-
vasiveHealth), 2010 4th International Conference on-
NO PERMISSIONS, pages 1–8. IEEE.
Gavrilescu, R., Zet, C., Fos
,
al
˘
au, C., Skoczylas, M., and Co-
tovanu, D. (2018). Faster r-cnn:an approach to real-
time object detection. In 2018 International Confer-
ence and Exposition on Electrical And Power Engi-
neering (EPE), pages 0165–0168.
Girshick, R. (2015). Fast r-cnn. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1440–
1448.
Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). Ar-
tificial neural networks: A tutorial. IEEE computer,
29(3):31–44.
Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection.
In International joint Conference on artificial intelli-
gence, volume 14, pages 1137–1145. Lawrence Erl-
baum Associates Ltd.
Pach
ˆ
eco Gomes, I., Renan Bruno, D., Santos Os
´
orio, F.,
and Fernando Wolf, D. (2018). Diagnostic analysis
for an autonomous truck using multiple attribute deci-
sion making. In 2018 Latin American Robotic Sympo-
sium, 2018 Brazilian Symposium on Robotics (SBR)
and 2018 Workshop on Robotics in Education (WRE),
pages 283–290.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time ob-
ject detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 779–
788.
Redmon, J. and Farhadi, A. (2017). Yolo9000: Better,
faster, stronger. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
6517–6525.
Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster r-
cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6):1137–1149.
Riedmiller, M. and Braun, H. (1992). Rprop-a fast adaptive
learning algorithm. In Proc. of ISCIS VII), Universitat.
Citeseer.
Soil
´
an, M., Riveiro, B., Mart
´
ınez-S
´
anchez, J., and Arias,
P. (2016). Traffic sign detection in mls acquired point
clouds for geometric and image-based semantic inven-
tory. ISPRS Journal of Photogrammetry and Remote
Sensing, 114:92 – 101.
Timofte, R., Zimmermann, K., and Van Gool, L. (2014).
Multi-view traffic sign detection, recognition, and 3d
localisation. Mach. Vision Appl., 25(3):633–647.
Wu, S., Wen, C., Luo, H., Chen, Y., Wang, C., and Li, J.
(2015). Using mobile lidar point clouds for traffic sign
detection and sign visibility estimation. In 2015 IEEE
International Geoscience and Remote Sensing Sympo-
sium (IGARSS), pages 565–568.
Yang, L., Kang, B., Huang, Z., Zhao, Z., Xu, X., Feng, J.,
and Zhao, H. (2024). Depth anything v2.
Zhou, L. and Deng, Z. (2014). Lidar and vision-based
real-time traffic sign detection and recognition algo-
rithm for intelligent vehicle. In 17th International
IEEE Conference on Intelligent Transportation Sys-
tems (ITSC), pages 578–583.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
878