of the computer science education community?. ACM
inroads, 2(1), 48-54.
Bellettini, C., Lodi, M., Lonati, V., Monga, M., &
Morpurgo, A. (2023, April). DaVinci goes to Bebras: a
study on the problem solving ability of GPT-3. In
CSEDU 2023-15th International Conference on
Computer Supported Education (Vol. 2, pp. 59-69).
SCITEPRESS-Science and Technology Publications.
Casal-Otero, L., Catala, A., Fernandez-Morante, C.,
Taboada, M., Cebreiro, B. and Barro, S. (2023). AI
literacy in K-12: A systematic literature review, in
International Journal of STEM Education, 10(1), 29.
https://doi.org/10.1186/s40594-023-00418-7.
Ceibal (2025). What is Ceibal? https://ceibal.edu.uy/en/
what-is-ceibal/
Ceibal (2022). Pensamiento computacional. Propuestas
para el aula. https://bibliotecapais.ceibal.edu.uy/info/
pensamiento-computacional-propuesta-para-el-aula-00
018977
Dagienė, V. (2010). Sustaining informatics education by
contests. In Teaching Fundamentals Concepts of
Informatics: 4th International Conference on
Informatics in Secondary Schools-Evolution and
Perspectives, ISSEP 2010, Zurich, Switzerland,
January 13-15, 2010. Proceedings 4 (pp. 1-12).
Springer Berlin Heidelberg.
Dagiene, V., & Stupuriene, G. (2016). Bebras--A
Sustainable Community Building Model for the
Concept Based Learning of Informatics and
Computational Thinking. Informatics in education,
15(1), 25-44.
Dagienė, V., Sentance, S., & Stupurienė, G. (2017).
Developing a two-dimensional categorization system
for educational tasks in informatics. Informatica, 28(1),
23-44.
Grover, S., & Pea, R. (2013). Computational thinking in K–
12: A review of the state of the field. Educational
Researcher, 42(1), 38–43. https://doi.org/10.3102/0013
189X12463051
Dan Hendrycks and Collin Burns and Steven Basart and
Andy Zou and Mantas Mazeika and Dawn Song and
Jacob Steinhardt (2021). Measuring Massive Multitask
Language Understanding. Proceedings of the
International Conference on Learning Representations
(ICLR).
Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D.X., & Steinhardt, J. (2021).
Measuring Mathematical Problem Solving With the
MATH Dataset. ArXiv, abs/2103.03874.
Kim, S., Jang, Y., Kim, W., Choi, S., Jung, H., Kim, S. and
Kim, H. (2021). Why and What to Teach: AI
Curriculum for Elementary School, in Proceedings of
the AAAI Conference on Artificial Intelligence, 35(17),
15569-15576.
Koleszar, V., Pérez Spagnolo, A., & Pereiro, E. (2021a).
Pensamiento computacional en educación primaria: El
caso de Uruguay. Jornadas Argentinas de Didáctica de
las Ciencias de la Computación, Buenos Aires,
Argentina.
Koleszar, V., Clavijo, D., Pereiro, E., & Urruticoechea, A.
(2021b). Análisis preliminares de los resultados del
desafío BEBRAS 2020 en Uruguay. Revista INFAD de
Psicología. International Journal of Developmental and
Educational Psychology., 1(2), 17-24.
Lizhou Fan, Lingyao Li, Zihui Ma, Sanggyu Lee, Huizi Yu,
and Libby Hemphill. (2024). A Bibliometric Review of
Large Language Models Research from 2017 to 2023.
ACM Trans. Intell. Syst. Technol. 15, 5, Article 91
(October 2024), 25 pages. https://doi.org/10.1145/
3664930
Long, D. & Magerko, B. (April 2020). What is AI literacy?
Competencies and design considerations, in
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, 1-16.
Lucy, L., August, T., Wang, R. E., Soldaini, L., Allison, C.,
& Lo, K. (2024). MathFish: Evaluating Language
Model Math Reasoning via Grounding in Educational
Curricula. arXiv preprint arXiv:2408.04226.
Natali, V., & Nugraheni, C. E. (2023). Indonesian Bebras
Challenge 2021 ExploratoryData Analysis. Olympiads
in Informatics, 17, 65-85.
Ng, D. T. K., LEUNG, J. K. L., Chu, S. K. W. and Qiao, M.
S. (2021). Conceptualizing AI literacy: An exploratory
review, in Computers and Education: Artificial
Intelligence, 2, 100041. 10.1016/j.caeai.2021.100041.
Olari, V. and Romeike, R. (October 2021). Addressing AI
and Data Literacy in Teacher Education: A Review of
Existing Educational Frameworks, in The 16th
Workshop in Primary and Secondary Computing
Education, pp. 1-2.
Pădurean, V. A., & Singla, A. (2024). Benchmarking
Generative Models on Computational Thinking Tests in
Elementary Visual Programming. arXiv preprint
arXiv:2406.09891.
Porto, C., Pereiro, E., Curi, M. E., Koleszar, V., &
Urruticoechea, A. (2024). Gender perspective in the
computational thinking program of Uruguay: teachers’
perceptions and results of the Bebras tasks. Journal of
Research on Technology in Education, 1-15.
Qingyao Li and Lingyue Fu and Weiming Zhang and
Xianyu Chen and Jingwei Yu and Wei Xia and Weinan
Zhang and Ruiming Tang and Yong Y. (2024).
Adapting Large Language Models for Education:
Foundational Capabilities, Potentials, and Challenges.
arXiv preprint arXiv:2401.08664.
Sentance, S. and Waite, J. (2022). Perspectives on AI and
data science education. Recovered from
https://www.raspberrypi.org/app/uploads/2022/12/Pers
pectives-on-AI-and-data-science-education-_Sentance-
Waite_2022.pdf
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).
Demystifying computational thinking. Educational
Research Review, 22, 142–158. doi:10.1016/j.edurev.
2017.09.003
Tedre, M., Denning, P. and Toivonen, T. (November 2021).
CT 2.0, in Proceedings of the 21st Koli Calling
International Conference on Computing Education
Research, pp. 1-8.