
ACKNOWLEDGEMENTS
The research leading to these results has received
funding from the European Community’s Hori-
zon Europe Programme under grant agreement n.
101058453.
REFERENCES
Alberti, E., Alvarez-Napagao, S., Anaya, V., Barroso, M.,
Barru
´
e, C., Beecks, C., Bergamasco, L., Chala, S. A.,
Gimenez-Abalos, V., Graß, A., et al. (2024). Ai lifecy-
cle zero-touch orchestration within the edge-to-cloud
continuum for industry 5.0. Systems, 12(2):48.
Apache NiFI (2006). Apache nifi: Data processing and dis-
tributing system. Available at: https://nifi.apache.org
(Accessed: 4 December 2024).
Apache Software Foundation (2024). Apache airflow. Ac-
cessed: 2024-11-20.
Bousdekis, A. and Mentzas, G. (2021). Digital twins for
intelligent manufacturing: A survey of applications,
architecture, and challenges. Computers in Industry,
128:103440.
Celery (2024). Optimizing — celery 5.4.0 documentation.
Accessed: 2024-11-20.
Eclipse Kura (2014). Eclipse kura: Open-source iot edge
framework. Available at: https://eclipse.dev/kura/
(Accessed: 4 December 2024).
Edge Foundry (2020). Edgex: Open-source edge plat-
form. Available at: https://www.odyssee-mure.eu/
(Accessed: 4 December 2024).
Emmert-Streib, F. and Yli-Harja, O. (2022). What is a
digital twin? experimental design for a data-centric
machine learning perspective in health. International
Journal of Molecular Sciences, 23(21):13149.
Escrib
`
a-Gelonch, M., Liang, S., van Schalkwyk, P., Fisk, I.,
Long, N. V. D., and Hessel, V. (2024). Digital twins in
agriculture: Orchestration and applications. Journal
of Agricultural and Food Chemistry.
Farsi, M., Daneshkhah, A., Hosseinian-Far, A., Jahankhani,
H., et al. (2020). Digital twin technologies and smart
cities.
Harper, K. E., Malakuti, S., and Ganz, C. (2019). Digital
twin architecture and standards.
He, R., Chen, G., Dong, C., Sun, S., and Shen, X. (2019).
Data-driven digital twin technology for optimized
control in process systems. ISA Transactions, 95:221–
234.
Hemdan, E. E. D., El-Shafai, W., and Sayed, A. (2023). In-
tegrating digital twins with iot-based blockchain: con-
cept, architecture, challenges, and future scope. Wire-
less Personal Communications, 131(3):2193–2216.
Henriksen, H. J. et al. (2022). A new digital twin for cli-
mate change adaptation, water management, and dis-
aster risk reduction (hip digital twin). Water, 15(1):25.
Javaid, M., Haleem, A., and Suman, R. (2023). Digital twin
applications toward industry 4.0: A review. Cognitive
Robotics, 3:71–92.
Jwo, J. S., Lee, C. H., and Lin, C. S. (2022). Data twin-
driven cyber-physical factory for smart manufactur-
ing. Sensors, 22(8):2821.
Kubernetes (2020). Kubernetes. https://www.kubernetes.io.
Accessed: 23 June 2020.
Li, X., Zhang, Y., Liu, Y., Li, P., Hu, H., Wang, L., and
Zhang, C. (2023). A high-throughput big-data orches-
tration and processing system for the high energy pho-
ton source. Journal of Synchrotron Radiation, 30(6).
Ma, Y., Zhu, X., Lu, J., Yang, P., and Sun, J. (2023). Con-
struction of data-driven performance digital twin for a
real-world gas turbine anomaly detection considering
uncertainty. Sensors, 23(15):6660.
Megargel, A., Poskitt, C. M., and Shankararaman, V.
(2021). Microservices orchestration vs. choreogra-
phy: A decision framework. In 2021 IEEE 25th In-
ternational Enterprise Distributed Object Computing
Conference (EDOC), pages 134–141.
Nguyen, T. T., Yeom, Y. J., Kim, T., Park, D. H., and
Kim, S. (2020). Horizontal pod autoscaling in ku-
bernetes for elastic container orchestration. Sensors,
20(16):4621.
Odyssee-Mure Project (2023). About the odyssee-mure
project. Available at: https://www.odyssee-mure.eu/
(Accessed: 21 May 2024).
Onwubiko, A., Singh, R., Awan, S., Pervez, Z., and
Ramzan, N. (2023). Enabling trust and security in dig-
ital twin management: A blockchain-based approach
with ethereum and ipfs. Sensors, 23(14):6641.
Rossini, R. et al. (2020). Replica: A solution for next gen-
eration iot and digital twin based fault diagnosis and
predictive maintenance. SAM IoT, 2739:55–62.
Salim, M. M., Comivi, A. K., Nurbek, T., Park, H., and
Park, J. H. (2022). A blockchain-enabled secure dig-
ital twin framework for early botnet detection in iiot
environment. Sensors, 22(16):6133.
Sax, M. J. (2018). Apache kafka. In Kleppmann, M. and
Lange, C., editors, Encyclopedia of Big Data Tech-
nologies. Springer, Cham.
Spotify (2024). Luigi - design and limitations. Accessed:
2024-11-20.
Sun, S., Li, W., Zhang, Z., Feng, J., and Zhang, C. (2020).
Data twin driven intelligent manufacturing: A com-
prehensive review. Journal of Manufacturing Systems,
56:547–558.
Yu, W., Patros, P., Young, B., Klinac, E., and Walmsley,
T. G. (2022). Energy digital twin technology for
industrial energy management: Classification, chal-
lenges and future. Renewable and Sustainable Energy
Reviews, 161:112407.
Zhang, X. et al. (2021). Digital twin for accelerating sus-
tainability in positive energy district: A review of sim-
ulation tools and applications. Frontiers in Sustain-
able Cities, 3:663269.
ˇ
Cili
´
c, I., Krivi
´
c, P., Podnar
ˇ
Zarko, I., and Ku
ˇ
sek, M.
(2023). Performance evaluation of container orches-
tration tools in edge computing environments. Sen-
sors, 23(8):4008.
IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security
344