
Gavrilescu, M. and Vizireanu, N. (2019). Predicting de-
pression, anxiety, and stress levels from videos using
the facial action coding system. Sensors, 19(17):3693.
Publisher: Multidisciplinary Digital Publishing Insti-
tute.
Geng, S., Jia, S., Qiao, Y., Yang, J., and Jia, Z. (2015). Com-
bining CNN and MIL to assist hotspot segmentation in
bone scintigraphy. In Arik, S., Huang, T., Lai, W. K.,
and Liu, Q., editors, Neural Information Processing,
Lecture Notes in Computer Science, pages 445–452.
Springer International Publishing.
Giannakakis, G., Grigoriadis, D., Giannakaki, K., Simanti-
raki, O., Roniotis, A., and Tsiknakis, M. (2019). Re-
view on psychological stress detection using biosig-
nals. IEEE Transactions on Affective Computing.
Giannakakis, G., Koujan, M. R., Roussos, A., and Marias,
K. (2020). Automatic stress detection evaluating mod-
els of facial action units. In 2020 15th IEEE Inter-
national Conference on Automatic Face and Gesture
Recognition (FG 2020), pages 728–733. IEEE.
Giannakakis, G., Pediaditis, M., Manousos, D., Kazantzaki,
E., Chiarugi, F., Simos, P. G., Marias, K., and Tsik-
nakis, M. (2017). Stress and anxiety detection using
facial cues from videos. Biomed. Signal Process. Con-
trol., 31:89–101.
Giannakakis, G., Roussos, A., Andreou, C., Borgwardt, S.,
and Korda, A. I. (2025). Stress recognition identify-
ing relevant facial action units through explainable ar-
tificial intelligence and machine learning. Computer
Methods and Programs in Biomedicine, 259:108507.
Gronwall, D. (1977). Paced auditory serial-addition task: a
measure of recovery from concussion. Perceptual and
motor skills, 44(2):367–373.
Hara, K., Kataoka, H., and Satoh, Y. (2017). Learning
spatio-temporal features with 3d residual networks for
action recognition. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 3154–3160.
Hasani, B. and Mahoor, M. H. (2017). Facial expres-
sion recognition using enhanced deep 3d convolu-
tional neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion workshops, pages 30–40.
Hosseini, S., Katragadda, S., Bhupatiraju, R. T., Ashkar, Z.,
Borst, C., Cochran, K., and Gottumukkala, R. (2021).
A multi-modal sensor dataset for continuous stress de-
tection of nurses in a hospital.
Jeon, T., Bae, H. B., Lee, Y., Jang, S., and Lee, S. (2021).
Deep-learning-based stress recognition with spatial-
temporal facial information. Sensors, 21(22):7498.
Kandemir, M. and Hamprecht, F. A. (2015). Computer-
aided diagnosis from weak supervision: a benchmark-
ing study. Computerized Medical Imaging and Graph-
ics: The Official Journal of the Computerized Medical
Imaging Society, 42:44–50.
Kandemir, M., Zhang, C., and Hamprecht, F. A. (2014).
Empowering multiple instance histopathology cancer
diagnosis by cell graphs. In Golland, P., Hata, N., Bar-
illot, C., Hornegger, J., and Howe, R., editors, Med-
ical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2014, Lecture Notes in Computer
Science, pages 228–235. Springer International Pub-
lishing.
Korda, A. I., Giannakakis, G., Ventouras, E., Asvestas,
P. A., Smyrnis, N., Marias, K., and Matsopoulos,
G. K. (2021). Recognition of blinks activity pat-
terns during stress conditions using cnn and marko-
vian analysis. Signals, 2(1):55–71.
Kumar, S., Iftekhar, A. S. M., Goebel, M., Bullock, T.,
Maclean, M., Miller, M., Santander, T., Giesbrecht,
B., Grafton, S., and Manjunath, B. (2021). Stressnet:
Detecting stress in thermal videos. pages 998–1008.
Li, H., Yang, F., Xing, X., Zhao, Y., Zhang, J., Liu, Y., Han,
M., Huang, J., Wang, L., and Yao, J. (2021). Multi-
modal multi-instance learning using weakly corre-
lated histopathological images and tabular clinical in-
formation. In International Conference on Medical
Image Computing and Computer-Assisted Interven-
tion, pages 529–539. Springer.
Li, R. and Liu, Z. (2020). Stress detection using deep neural
networks. 20.
Li, S., Liu, F., and Jiao, L. (2022). Self-training multi-
sequence learning with transformer for weakly super-
vised video anomaly detection. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 1395–1403.
Li, W. and Vasconcelos, N. (2015a). Multiple instance
learning for soft bags via top instances. In 2015 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4277–4285.
Li, W. and Vasconcelos, N. (2015b). Multiple instance
learning for soft bags via top instances. In 2015 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4277–4285. IEEE.
Luo, W., Liu, W., and Gao, S. (2017). A revisit of
sparse coding based anomaly detection in stacked
RNN framework. In 2017 IEEE International Con-
ference on Computer Vision (ICCV), pages 341–349.
IEEE.
Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N.
(2010). Anomaly detection in crowded scenes. In
2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages 1975–
1981. ISSN: 1063-6919.
Naegelin, M., Weibel, R. P., Kerr, J. I., Schinazi, V. R.,
La Marca, R., von Wangenheim, F., Hoelscher, C.,
and Ferrario, A. (2023). An interpretable machine
learning approach to multimodal stress detection in a
simulated office environment. Journal of Biomedical
Informatics, 139:104299.
Siam, A. I., Gamel, S. A., and Talaat, F. M. (2023). Au-
tomatic stress detection in car drivers based on non-
invasive physiological signals using machine learning
techniques. 35(17):12891–12904.
Sikka, K., Dhall, A., and Bartlett, M. (2013). Weakly super-
vised pain localization using multiple instance learn-
ing. In 2013 10th IEEE International Conference and
Workshops on Automatic Face and Gesture Recogni-
tion (FG), pages 1–8.
Sikka, K., Dhall, A., and Bartlett, M. S. (2014). Classifi-
cation and weakly supervised pain localization using
HEALTHINF 2025 - 18th International Conference on Health Informatics
294