
Brockenbrough, A. and Salinas, D. (2024). Using genera-
tive ai to create user stories in the software engineer-
ing classroom. In 2024 36th International Confer-
ence on Software Engineering Education and Train-
ing (CSEE&T), pages 1–5.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. (2020). Language models are few-shot
learners. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc.
Buglione, L. and Abran, A. (2013). Improving the user
story agile technique using the invest criteria. In 2013
Joint Conference of the 23rd International Workshop
on Software Measurement and the 8th International
Conference on Software Process and Product Mea-
surement, pages 49–53.
Ferreira Martins, H., Carvalho de Oliveira Junior, A.,
Canedo, E. D., Kosloski, R. A. D., Pald
ˆ
es, R.
´
A.,
and Oliveira, E. C. (2019). Design thinking: Desafios
para elicitac¸
˜
ao de requisitos de software. Informac¸
˜
ao,
10(12):371.
Hiraou, S. R. (2024). Optimising hard prompts with few-
shot meta-prompting. arXiv:2407.18920. Retrieved
from https://arxiv.org/abs/2407.18920.
H
¨
ost, M., Regnell, B., and Wohlin, C. (2000). Using stu-
dents as subjects—a comparative study of students
and professionals in lead-time impact assessment.
Empirical Software Engineering, 5:201–214.
Hoy, Z. and Xu, M. (2023). Agile software requirements en-
gineering challenges-solutions—a conceptual frame-
work from systematic literature review. Information,
14(6):322.
Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang,
H., Chen, Q., Peng, W., Feng, X., Qin, B., and Liu, T.
(2024). A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open
questions. ACM Trans. Inf. Syst. Just Accepted.
Jaramillo, C. M. Z. (2010). Computational linguistics for
helping requirements elicitation: a dream about auto-
mated software development. In Proceedings of the
NAACL HLT 2010 Young Investigators Workshop on
Computational Approaches to Languages of the Amer-
icas, pages 117–124.
Krishna, M., Gaur, B., Verma, A., and Jalote, P. (2024). Us-
ing LLMs in Software Requirements Specifications:
An Empirical Evaluation . In 2024 IEEE 32nd Inter-
national Requirements Engineering Conference (RE),
pages 475–483, Los Alamitos, CA, USA. IEEE Com-
puter Society.
Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., and
Brinkkemper, S. (2016a). The use and effectiveness
of user stories in practice. In Daneva, M. and Pastor,
O., editors, Requirements Engineering: Foundation
for Software Quality, volume 9619 of Lecture Notes in
Computer Science, pages 187–202. Springer, Cham.
Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., and
et al. (2016b). Improving agile requirements: The
quality user story framework and tool. Requirements
Engineering, 21(4):383–403.
Marques, N., Silva, R. R., and Bernardino, J. (2024). Us-
ing chatgpt in software requirements engineering: A
comprehensive review. Future Internet, 16(6):180.
Oswal, J. U., Kanakia, H. T., and Suktel, D. (2024). Trans-
forming software requirements into user stories with
gpt-3.5-: An ai-powered approach. In 2024 2nd In-
ternational Conference on Intelligent Data Communi-
cation Technologies and Internet of Things (IDCIoT),
pages 913–920. IEEE.
Rahman, T., Zhu, Y., Maha, L., Roy, C., Roy, B., and
Schneider, K. (2024). Take loads off your developers:
Automated user story generation using large language
model. In 2024 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
791–801.
Rasheed, I. (2021). Requirement engineering challenges in
agile software development. Mathematical Problems
in Engineering, 2021:1–18.
Ronanki, K., Cabrero-Daniel, B., and Berger, C. (2024).
Chatgpt as a tool for user story quality evaluation:
Trustworthy out of the box? In Kruchten, P. and
Gregory, P., editors, Agile Processes in Software En-
gineering and Extreme Programming – Workshops,
volume 489 of Lecture Notes in Business Information
Processing, Cham. Springer.
Salman, I., Misirli, A. T., and Juristo, N. (2015). Are
students representatives of professionals in software
engineering experiments? In 2015 IEEE/ACM 37th
IEEE international conference on software engineer-
ing, volume 1, pages 666–676. IEEE.
Sommerville, I. (2011). Software Engineering. Pearson,
Boston, 9th edition.
Vogelsang, A. (2024). From specifications to prompts: On
the future of generative large language models in re-
quirements engineering. IEEE Software, 41(5):9–13.
White, J., Hays, S., Fu, Q., Spencer-Smith, J., and Schmidt,
D. C. (2024). ChatGPT prompt patterns for improv-
ing code quality, refactoring, requirements elicitation,
and software design, pages 71–108. Springer.
Wohlin, C., Runeson, P., H
¨
ost, M., Ohlsson, M. C., Reg-
nell, B., Wessl
´
en, A., et al. (2012). Experimentation
in software engineering, volume 236. Springer.
Yarlagadda, R. T. (2021). Software engineering automa-
tion in it. International Journal of Innovations in En-
gineering Research and Technology. Retrieved from
https://ssrn.com/abstract=3797346.
Zhang, Z., Zhang, A., Li, M., and Smola, A. (2023). Au-
tomatic chain of thought prompting in large language
models. In The Eleventh International Conference on
Learning Representations.
ICEIS 2025 - 27th International Conference on Enterprise Information Systems
58