
Lempitsky, V. (2016). Domain-adversarial training of
neural networks. The journal of machine learning re-
search, 17(1):2096–2030.
Gao, Y. and Leung, M. K. (2002). Human face profile
recognition using attributed string. Pattern Recogni-
tion, 35(2):353–360.
Garcia, V. and Bruna, J. (2017). Few-shot learn-
ing with graph neural networks. arXiv preprint
arXiv:1711.04043.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Huang, G. B., Mattar, M., Berg, T., and Learned-Miller,
E. (2008). Labeled faces in the wild: A database
forstudying face recognition in unconstrained envi-
ronments. In Workshop on faces in’Real-Life’Images:
detection, alignment, and recognition.
Jolliffe, I. T. (2002). Principal component analysis for spe-
cial types of data. Springer.
Kazemi, V. and Sullivan, J. (2014). One millisecond face
alignment with an ensemble of regression trees. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1867–1874.
Li, P., Wu, X., Hu, Y., He, R., and Sun, Z. (2019). M2fpa: A
multi-yaw multi-pitch high-quality dataset and bench-
mark for facial pose analysis. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 10043–10051.
Lipo
ˇ
s
ˇ
cak, Z. and Loncaric, S. (1999). A scale-space ap-
proach to face recognition from profiles. In Computer
Analysis of Images and Patterns: 8th International
Conference, CAIP’99 Ljubljana, Slovenia, September
1–3, 1999 Proceedings 8, pages 243–250. Springer.
Meng, Q., Zhao, S., Huang, Z., and Zhou, F. (2021).
Magface: A universal representation for face recog-
nition and quality assessment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14225–14234.
Messer, K., Matas, J., Kittler, J., Luettin, J., and Maitre, G.
(1999). Xm2vtsdb: The extended m2vts database. In
Second international conference on audio and video-
based biometric person authentication, volume 964,
pages 965–966. Citeseer.
Montero, D., Nieto, M., Leskovsky, P., and Aginako, N.
(2022). Boosting masked face recognition with multi-
task arcface. In 2022 16th International Conference
on Signal-Image Technology & Internet-Based Sys-
tems (SITIS), pages 184–189. IEEE.
Morvant, E., Habrard, A., and Ayache, S. (2011). Sparse
domain adaptation in projection spaces based on good
similarity functions. In 2011 IEEE 11th International
Conference on Data Mining, pages 457–466. IEEE.
Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep
face recognition.
Parnami, A. and Lee, M. (2022). Learning from few exam-
ples: A summary of approaches to few-shot learning.
arXiv preprint arXiv:2203.04291.
Sengupta, S., Chen, J.-C., Castillo, C., Patel, V. M., Chel-
lappa, R., and Jacobs, D. W. (2016). Frontal to profile
face verification in the wild. In 2016 IEEE winter con-
ference on applications of computer vision (WACV),
pages 1–9. IEEE.
Shirbani, F. and Soltanian Zadeh, H. (2013). Fast sffs-based
algorithm for feature selection in biomedical datasets.
AUT Journal of Electrical Engineering, 45(2):43–56.
Toygar,
¨
O., Alqaralleh, E., and Afaneh, A. (2018). Sym-
metric ear and profile face fusion for identical twins
and non-twins recognition. Signal, Image and Video
Processing, 12:1157–1164.
Tzimiropoulos, G. and Pantic, M. (2013). Optimization
problems for fast aam fitting in-the-wild. In Proceed-
ings of the IEEE international conference on com-
puter vision, pages 593–600.
Walker, M. W., Shao, L., and Volz, R. A. (1991). Estimat-
ing 3-d location parameters using dual number quater-
nions. CVGIP: image understanding, 54(3):358–367.
Wallhoff, F., Muller, S., and Rigoll, G. (2001). Recognition
of face profiles from the mugshot database using a hy-
brid connectionist/hmm approach. In 2001 IEEE In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing. Proceedings (Cat. No. 01CH37221),
volume 3, pages 1489–1492. IEEE.
Wallhoff, F. and Rigoll, G. (2001). A novel hybrid face pro-
file recognition system using the feret and mugshot
databases. In Proceedings 2001 International Con-
ference on Image Processing (Cat. No. 01CH37205),
volume 1, pages 1014–1017. IEEE.
Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. (2020). Gen-
eralizing from a few examples: A survey on few-shot
learning. ACM computing surveys (csur), 53(3):1–34.
Xu, X. and Mu, Z. (2007). Feature fusion method based on
kcca for ear and profile face based multimodal recog-
nition. In 2007 IEEE international conference on au-
tomation and logistics, pages 620–623. IEEE.
Yin, Y., Jiang, S., Robinson, J. P., and Fu, Y. (2020). Dual-
attention gan for large-pose face frontalization. In
2020 15th IEEE international conference on auto-
matic face and gesture recognition (FG 2020), pages
249–256. IEEE.
Zeng, H. and Yi, Q. (2011). Quaternion-based iterative so-
lution of three-dimensional coordinate transformation
problem. J. Comput., 6(7):1361–1368.
Zhao, J., Cheng, Y., Xu, Y., Xiong, L., Li, J., Zhao, F.,
Jayashree, K., Pranata, S., Shen, S., Xing, J., et al.
(2018). Towards pose invariant face recognition in
the wild. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2207–
2216.
Zhong, E., Fan, W., Yang, Q., Verscheure, O., and Ren,
J. (2010). Cross validation framework to choose
amongst models and datasets for transfer learning.
In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD
2010, Barcelona, Spain, September 20-24, 2010, Pro-
ceedings, Part III 21, pages 547–562. Springer.
Facial Profile Biometrics: Domain Adaptation and Deep Learning Approaches
1053