
Table 5: Comparison of FDB-BEHO versus other optimization algorithms in terms of average selected number of features.
Dataset FDB-BEHO-V FDB-BEHO-S ABC SSA PSO GA EO ASO
CLL SUB 111 2837,16 8502,69 5627,75 3042,80 5626,82 5638,17 2898,14 5645,71
colon 102,41 1008,31 943,96 446,08 944,82 943,82 269,14 962,33
leukemia 189,06 3473,45 3402,10 1184,12 3364,12 3391,89 450,22 3440,25
lung 130,45 1605,61 1561,96 626,45 1536,14 1558,65 366,61 1589,00
lung discrete 13,02 153,67 138,33 62,55 134,08 137,07 45,53 142,86
lymphoma 96,43 92,48 1850,75 636,55 1820,10 1879,19 84,02 1908,35
nci9 2172,55 2167,76 4797,90 2561,59 4800,18 4799,96 1876,92 4806,20
Prostate GE 387,94 2952,61 2890,92 1231,06 2878,24 2885,34 900,16 2919,59
SMK CAN 187 5522,69 15338,35 9969,24 5502,22 9944,98 9964,37 5124,49 10021,29
Table 6: p-values of the Wilcoxson test of FDB-BEHO-V versus other optimization algorithms (p ≥ 0.05 are underlined).
Dataset FDB-BEHO-S ABC SSA PSO GA EO ASO
CLL SUB 111 1,83E-06 6,15E-10 2,80E-09 1,77E-09 8,27E-10 1,05E-09 5,14E-10
colon 5,14E-10 5,13E-10 5,14E-10 5,14E-10 5,13E-10 5,46E-10 5,14E-10
leukemia 5,14E-10 5,13E-10 5,14E-10 5,14E-10 5,14E-10 6,53E-10 5,14E-10
lung 5,14E-10 5,14E-10 5,14E-10 5,14E-10 5,13E-10 5,14E-10 5,13E-10
lung discrete 5,04E-10 5,00E-10 5,07E-10 5,09E-10 4,98E-10 5,09E-10 5,08E-10
lymphoma 0,0608 5,14E-10 5,14E-10 5,13E-10 5,13E-10 4,17E-08 5,14E-10
nci9 0,0608 8,77E-10 6,92E-09 5,15E-10 5,15E-10 2,44E-08 5,15E-10
Prostate GE 5,14E-10 5,14E-10 5,14E-10 5,14E-10 5,14E-10 5,79E-10 5,14E-10
SMK CAN 187 6,08E-02 5,15E-10 2,23E-09 5,15E-10 1,05E-09 4,42E-09 6,93E-10
REFERENCES
Al-Betar, M. A., Awadallah, M. A., Braik, M. S., Makhad-
meh, S., and Doush, I. A. (2024). Elk herd optimizer:
a novel nature-inspired metaheuristic algorithm. Arti-
ficial Intelligence Review, 57(3):48.
Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos,
I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran,
T., Yu, X., et al. (2000). Distinct types of diffuse large
b-cell lymphoma identified by gene expression profil-
ing. Nature, 403(6769):503–511.
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra,
S., Mack, D., and Levine, A. J. (1999). Broad patterns
of gene expression revealed by clustering analysis of
tumor and normal colon tissues probed by oligonu-
cleotide arrays. Proceedings of the National Academy
of Sciences, 96(12):6745–6750.
Alzaqebah, M., Briki, K., Alrefai, N., Brini, S., Jawarneh,
S., Alsmadi, M. K., Mohammad, R. M. A., AL-
marashdeh, I., Alghamdi, F. A., Aldhafferi, N., et al.
(2021). Memory based cuckoo search algorithm for
feature selection of gene expression dataset. Informat-
ics in Medicine Unlocked, 24:100572.
Bertsimas, D. and Tsitsiklis, J. (1993). Simulated anneal-
ing. Statistical science, 8(1):10–15.
Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C.,
Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, R.,
Gillette, M., et al. (2001). Classification of human
lung carcinomas by mrna expression profiling reveals
distinct adenocarcinoma subclasses. Proceedings of
the National Academy of Sciences, 98(24):13790–
13795.
Bommert, A., Welchowski, T., Schmid, M., and Rah-
nenf
¨
uhrer, J. (2022). Benchmark of filter methods
for feature selection in high-dimensional gene ex-
pression survival data. Briefings in Bioinformatics,
23(1):bbab354.
Dokeroglu, T., Deniz, A., and Kiziloz, H. E. (2022). A com-
prehensive survey on recent metaheuristics for feature
selection. Neurocomputing, 494:269–296.
Faramarzi, A., Heidarinejad, M., Stephens, B., and Mir-
jalili, S. (2020). Equilibrium optimizer: A novel
optimization algorithm. Knowledge-based systems,
191:105190.
Gandomi, A. H., Yang, X.-S., and Alavi, A. H. (2013).
Cuckoo search algorithm: a metaheuristic approach
to solve structural optimization problems. Engineer-
ing with computers, 29:17–35.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasen-
beek, M., Mesirov, J. P., Coller, H., Loh, M. L., Down-
ing, J. R., Caligiuri, M. A., et al. (1999). Molecu-
lar classification of cancer: class discovery and class
prediction by gene expression monitoring. science,
286(5439):531–537.
Haq, A. U., Li, J. P., Saboor, A., Khan, J., Wali, S., Ahmad,
S., Ali, A., Khan, G. A., and Zhou, W. (2021). Detec-
tion of breast cancer through clinical data using super-
vised and unsupervised feature selection techniques.
IEEE Access, 9:22090–22105.
Haslinger, C., Schweifer, N., Stilgenbauer, S., Dohner, H.,
Lichter, P., Kraut, N., Stratowa, C., and Abseher, R.
(2004). Microarray gene expression profiling of b-cell
chronic lymphocytic leukemia subgroups defined by
genomic aberrations and vh mutation status. Journal
of Clinical Oncology, 22(19):3937–3949.
Holland, J. H. (1992). Genetic algorithms. Scientific amer-
ican, 267(1):66–73.
Kahraman, H. T., Aras, S., and Gedikli, E. (2020). Fitness-
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
796