
plementary perspectives of both the raw time series
and the spectrogram.
In conclusion, this study highlights the potential
of associating a robust classifier after extracting fea-
tures from EEG signals for classification into sleep
stages, as well as leveraging the different perspec-
tives these data provide. Indeed, this approach holds
promise for further exploration in a variety of prob-
lems involving biological signals in general, such as
the detection of anomalies in electrocardiograms, for
example.
ACKNOWLEDGEMENTS
J. B. Florindo gratefully acknowledges the finan-
cial support of the S
˜
ao Paulo Research Foundation
(FAPESP) (Grants #2024/01245-1 and #2020/09838-
0) and from National Council for Scientific and
Technological Development, Brazil (CNPq) (Grant
#306981/2022-0).
REFERENCES
Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recog-
nition and machine learning, volume 4. Springer.
Eldele, E., Ragab, M., Chen, Z., Wu, M., Kwoh, C.-K.,
and Li, X. (2023). Self-supervised learning for label-
efficient sleep stage classification: A comprehensive
evaluation. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 31:1333–1342.
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov,
P. C., Mark, R., Mietus, J. E., Moody, G. B., Peng,
C. K., and Stanley, H. E. (2000). Physiobank, phys-
iotoolkit, and physionet: Components of a new re-
search resource for complex physiologic signals. Cir-
culation [Online], 101 (23):pp. e215–e220.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition. CoRR,
abs/1512.03385.
Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H.
A. C., and Oberye, J. J. L. (2000). Analysis of a
sleep-dependent neuronal feedback loop: the slow-
wave microcontinuity of the eeg. IEEE Transactions
on Biomedical Engineering, 47(9):1185–1194.
Kumar, V., Reddy, L., Sharma, S. K., Dadi, K., Yarra,
C., Bapi, R. S., and Rajendran, S. (2022). muleeg:
A multi-view representation learning on eeg signals.
Lecture Notes in Computer Science, 13433.
Liu, P., Qian, W., Zhang, H., Zhu, Y., Hong, Q., Li, Q.,
and Yao, Y. (2024). Automatic sleep stage classifica-
tion using deep learning: signals, data representation,
and neural networks. Artificial Intelligence Review,
57(11):301.
Patel, A. K., Reddy, V., Shumway, K. R., and Araujo, J. F.
(2024). Physiology, sleep stages.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Sekkal, R. N., Bereksi-Reguig, F., Ruiz-Fernandez, D., Dib,
N., and Sekkal, S. (2022). Automatic sleep stage clas-
sification: From classical machine learning methods
to deep learning. Biomedical Signal Processing and
Control, 77:103751.
Xiao, T., Wang, Z., Zhang, Y., Wang, S., Feng, H., Zhao, Y.,
et al. (2024). Self-supervised learning with attention
mechanism for eeg-based seizure detection. Biomedi-
cal Signal Processing and Control, 87:105464.
Yuan, H., Plekhanova, T., Walmsley, R., Reynolds, A. C.,
Maddison, K. J., Bucan, M., Gehrman, P., Rowlands,
A., Ray, D. W., Bennett, D., et al. (2024). Self-
supervised learning of accelerometer data provides
new insights for sleep and its association with mor-
tality. NPJ digital medicine, 7(1):86.
Sleep-Stage Efficient Classification Using a Lightweight Self-Supervised Model
979