
Al-Selwi, S. M., Hassan, M. F., Abdulkadir, S. J., Muneer,
A., Sumiea, E. H., Alqushaibi, A., and Ragab, M. G.
(2024). Rnn-lstm: From applications to modeling
techniques and beyond—systematic review. Journal
of King Saud University-Computer and Information
Sciences, page 102068.
Bhasin, S., Danger, J.-L., Guilley, S., Ngo, X. T., and
Sauvage, L. (2013). Hardware trojan horses in cryp-
tographic ip cores. In Proc 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pages 15–
29.
Bhunia, S., Hsiao, M. S., Banga, M., and Narasimhan,
S. (2014). Hardware trojan attacks: Threat analy-
sis and countermeasures. Proceedings of the IEEE,
102(8):1229–1247.
Chakraborty, R. S., Wolff, F., Paul, S., Papachristou, C.,
and Bhunia, S. (2009). Mero: A statistical approach
for hardware trojan detection. In Proc. International
Workshop on Cryptographic Hardware and Embed-
ded Systems, pages 396–410.
Ermshaus, A., Sch
¨
afer, P., and Leser, U. (2023). Window
size selection in unsupervised time series analytics: A
review and benchmark. In Proceedings of Interna-
tional Workshop on Advanced Analytics and Learning
on Temporal Data, pages 83–101. Springer.
Francq, J. and Frick, F. (2015). Introduction to hardware
trojan detection methods. In Proc. 2015 Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE), pages 770–775.
HaddadPajouh, H., Dehghantanha, A., Khayami, R., and
Choo, K.-K. R. (2018). A deep recurrent neural net-
work based approach for internet of things malware
threat hunting. Future Generation Computer Systems,
85:88–96.
Hasegawa, K., Yanagisawa, M., and Togawa, N. (2018).
Detecting the existence of malfunctions in micro-
controllers utilizing power analysis. In Proc. 2018
IEEE 24th International Symposium on On-Line Test-
ing And Robust System Design (IOLTS), pages 97–
102.
Hotelling, H. (1992). The generalization of Student’s ratio.
Springer.
Islam, R., Tian, R., Batten, L. M., and Versteeg, S. (2013).
Classification of malware based on integrated static
and dynamic features. Journal of Network and Com-
puter Applications, 36(2):646–656.
Jin, Y. and Makris, Y. (2008). Hardware trojan detection
using path delay fingerprint. In Proc. 2008 IEEE In-
ternational workshop on hardware-oriented security
and trust, pages 51–57.
Koopmans, L. H. (1995). The spectral analysis of time se-
ries.
Martinez, B., Monton, M., Vilajosana, I., and Prades, J. D.
(2015). The power of models: Modeling power con-
sumption for iot devices. IEEE Sensors Journal,
15(10):5777–5789.
Oya, M., Shi, Y., Yanagisawa, M., and Togawa, N. (2015).
A score-based classification method for identifying
hardware-trojans at gate-level netlists. In Proc. 2015
Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 465–470.
Salmani, H., Tehranipoor, M., and Plusquellic, J. (2012). A
novel technique for improving hardware trojan detec-
tion and reducing trojan activation time. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Sys-
tems, 20(1):112–125.
Takasaki, K., Kida, R., and Togawa, N. (2021a). An anoma-
lous behavior detection method based on power anal-
ysis utilizing steady state power waveform predicted
by lstm. In Proc 2021 IEEE 27th International Sym-
posium on On-Line Testing and Robust System Design
(IOLTS), pages 1–7.
Takasaki, K., Kida, R., and Togawa, N. (2021b). An
anomalous behavior detection method utilizing ex-
tracted application-specific power behaviors. IEICE
Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, 104(11):1555–
1565.
Wang, L., Xie, H., and Luo, H. (2013). Malicious circuitry
detection using transient power analysis for ic secu-
rity. In Proc. 2013 International Conference on Qual-
ity, Reliability, Risk, Maintenance, and Safety Engi-
neering (QR2MSE), pages 1164–1167.
Wang, Z. and Bovik, A. C. (2009). Mean squared error:
Love it or leave it? a new look at signal fidelity mea-
sures. IEEE signal processing magazine, 26(1):98–
117.
Zaza, A. M., Kharroub, S. K., and Abualsaud, K. (2020).
Lightweight iot malware detection solution using cnn
classification. In 2020 IEEE 3rd 5G World Forum
(5GWF), pages 212–217. IEEE.
IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security
352