
simulation in papyrus tool for decision making in in-
dustrial context. Comput. & Indus. Engineering, 137.
Haimes, Y. Y. (2018). Risk modeling of interdependent
complex systems of systems: Theory and practice.
Risk Analysis, 38(1):84–98.
Harel, D., Kantor, A., Katz, G., Marron, A., Mizrahi, L.,
and Weiss, G. (2013). On composing and proving the
correctness of reactive behavior. In EMSOFT 2013,
pages 1–10. IEEE.
Harel., D., Katz., G., Marron., A., and Szekely., S. (2024).
On augmenting scenario-based modeling with gener-
ative AI. In MODELSWARD 2024, pages 235–246.
Harel, D., Marron, A., and Sifakis, J. (2020). Auto-
nomics: In search of a foundation for next-generation
autonomous systems. Proceedings of the National
Academy of Sciences, 117(30):17491–17498.
Harel, D. and Pnueli, A. (1984). On the development of
reactive systems. In Logics and models of concur. sys.,
pages 477–498. Springer.
Harel, D., Yerushalmi, R., Marron, A., and Elyasaf, A.
(2024). Categorizing methods for integrating machine
learning with executable specifications. Science China
Information Sciences, 67(1):111101.
Herkert, J., Borenstein, J., and Miller, K. (2020). The Boe-
ing 737 MAX: Lessons for engineering ethics. Sci-
ence and engineering ethics, 26:2957–2974.
Horv
´
ath, B., Moln
´
ar, V., Graics, B., Hajdu,
´
A., R
´
ath, I.,
Horv
´
ath,
´
A., Karban, R., Trancho, G., and Micskei, Z.
(2023). Pragmatic verification and validation of indus-
trial executable SysML models. Systems Engineering,
26(6):693–714.
Huang, E., McGinnis, L. F., and Mitchell, S. W. (2020).
Verifying SysML activity diagrams using formal
transformation to petri nets. Systems Engineering,
23(1):118–135.
Kane, B. R., Webber, S., Tucker, K. H., Wallace, S., Chang,
J., Mccarthy, D., Murphy, D., Egel, D., and Wingfield,
T. (2024). Threats to critical infrastructure. Rand Cor-
poration Research Reports.
Koopman, P. (2024). Anatomy of a robotaxi crash: Lessons
from the Cruise pedestrian dragging mishap. arXiv
preprint arXiv:2402.06046.
Kourani, H., Berti, A., Schuster, D., and van der Aalst,
W. M. (2024). Process modeling with large language
models. In International Conference on Business Pro-
cess Modeling, Development and Support, pages 229–
244. Springer.
Laplante, P. A. and Kassab, M. (2022). What every engineer
should know about software engineering. CRC Press.
Lattimore, M., Karban, R., Gomez, M. P., Bovre, E., and
Reeves, G. E. (2022). A model-based approach for
Europa lander mission concept exploration. In 2022
IEEE Aerospace Conference (AERO), pages 1–13.
IEEE.
Lee, E. A. (2024). Certainty or intelligence: Pick one! In
Design, Automation & Test in Europe (DATE), pages
1–2. IEEE.
Li, N., Tsigkanos, C., Jin, Z., Hu, Z., and Ghezzi, C. (2020).
Early validation of cyber–physical space systems via
multi-concerns integration. Journal of Systems and
Software, 170:110742.
Lo, C., Chen, C.-H., and Zhong, R. Y. (2021). A review of
digital twin in product design and development. Adv.
Eng. Informatics, 48:101297.
Marron, A., Cohen, I. R., Frankel, G., Harel, D., and
Szekely, S. (2024). Challenges in modeling and un-
modeling complex reactive systems: Interaction net-
works, reaction to emergent effects, reactive rule com-
position, and multiple time scales. Springer CCIS.
Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M.,
Socher, R., Amatriain, X., and Gao, J. (2024).
Large language models: A survey. arXiv preprint
arXiv:2402.06196.
Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., and Coq,
T. (2012). A SysML-based approach to traceability
management and design slicing in support of safety
certification: Framework, tool support, and case stud-
ies. Information and Software Technology, 54(6):569–
590.
Netz, L., Michael, J., and Rumpe, B. (2024). From nat-
ural language to web applications: Using large lan-
guage models for model-driven software engineering.
In Modellierung 2024, pages 179–195. Gesellschaft
f
¨
ur Informatik eV.
Noering, F. K.-D., Schroeder, Y., Jonas, K., and Klawonn,
F. (2021). Pattern discovery in time series using au-
toencoder in comparison to nonlearning approaches.
Integrated Computer-Aided Engineering, 28(3).
Oliveira, R., Palanque, P., Weyers, B., Bowen, J., and Dix,
A. (2017). State of the art on formal methods for in-
teractive systems. The handbook of formal methods in
human-computer interaction, pages 3–55.
Pang, G., Shen, C., Cao, L., and Hengel, A. V. D. (2021).
Deep learning for anomaly detection: A review. ACM
comput. surv., 54(2):1–38.
Rahim, M., Boukala-Ioualalen, M., and Hammad, A.
(2021). Hierarchical colored Petri nets for the veri-
fication of SysML designs-activity-based slicing ap-
proach. In Advances in Computing Systems and Ap-
plications: Proc. 4th Conf. on Comp. Sys. and App.,
pages 131–142. Springer.
Ramackers, G. J., Griffioen, P. P., Schouten, M. B., and
Chaudron, M. R. (2021). From prose to prototype:
synthesising executable UML models from natural
language. In MODELS-C, pages 380–389. IEEE.
Seipp, J. and Helmert, M. (2018). Counterexample-guided
cartesian abstraction refinement for classical planning.
J. of Artificial Intel. Res., 62.
Shani, C., Vreeken, J., and Shahaf, D. (2023). Towards
concept-aware large language models. arXiv preprint
arXiv:2311.01866.
Sultan, B. and Apvrille, L. (2024). Ai-driven consistency
of sysml diagrams. In Proceedings of the ACM/IEEE
27th International Conference on Model Driven Engi-
neering Languages and Systems, pages 149–159.
Tamari, R., Shani, C., Hope, T., Petruck, M. R. L., Abend,
O., and Shahaf, D. (2020). Language (re)modelling:
Towards embodied language understanding. In Juraf-
MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering
328