
REFERENCES
Aoki, N., Mori, N., and OKada, M. (2023). Analysis of llm-
based narrative generation using the agent-based sim-
ulation. In 2023 15th International Congress on Ad-
vanced Applied Informatics Winter (IIAI-AAI-Winter),
pages 284–289. IEEE.
Bost, X., Labatut, V., Gueye, S., and Linar
`
es, G. (2016).
Narrative smoothing: dynamic conversational net-
work for the analysis of tv series plots. In 2016
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM),
pages 1111–1118. IEEE.
Dalla Torre, P., Fantozzi, P., Naldi, M., and Pellegriti, P.
(2023). 3. looking for lexical signatures in gomorrah.
AUDIOVISUAL DATA, page 41.
Degli Esposti, M. and Pescatore, G. (2023). Exploring tv
seriality and television studies through data-driven ap-
proaches. In Audiovisual Data: Data-Driven Perspec-
tives for Media Studies. 13th Media Mutations Inter-
national Conference, pages 23–40. Media Mutations
Publishing.
Genette, G. (1997). Paratexts: Thresholds of Interpreta-
tion. Literature, Culture, Theory. Cambridge Univer-
sity Press.
Ghafarollahi, A. and Buehler, M. J. (2024). Scia-
gents: Automating scientific discovery through multi-
agent intelligent graph reasoning. arXiv preprint
arXiv:2409.05556.
Greimas, A. J., Court
´
es, J., Crist, L., and Patte, D. (1982).
Semiotics and language: An analytical dictionary,
volume 10. Indiana University Press Bloomington.
Haywood, S., Warren, G., and Wolf, A. (2024). Understand
tokens. Microsoft Learn.
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., and
Scholkopf, B. (1998). Support vector machines. IEEE
Intelligent Systems and their applications, 13(4):18–
28.
Ionescu, A. (2019). Postclassical narratology: Twenty years
later. Word and Text, A Journal of Literary Studies and
Linguistics, 9(01):5–34.
Janosov, M. (2021). Network science predicts who dies next
in game of thrones. arXiv preprint arXiv:2110.09856.
Laukkanen, M. (2024). Audience-authored paratexts: le-
gitimation of online discourse about game of thrones.
Frontiers of Narrative Studies, 10(1):35–55.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., K
¨
uttler, H., Lewis, M., Yih, W.-t.,
Rockt
¨
aschel, T., et al. (2020). Retrieval-augmented
generation for knowledge-intensive nlp tasks. Ad-
vances in Neural Information Processing Systems,
33:9459–9474.
Mittell, J. (2015). Complex TV: The Poetics of Contem-
porary Television Storytelling. New York University
Press.
Niwattanakul, S., Singthongchai, J., Naenudorn, E., and
Wanapu, S. (2013). Using of jaccard coefficient for
keywords similarity. In Proceedings of the interna-
tional multiconference of engineers and computer sci-
entists, volume 1, pages 380–384.
P
´
erez, H. J. and Ortiz, M. J. (2021). Multi-plot structure in
television serials. In Cognition, Emotion, and Aesthet-
ics in Contemporary Serial Television, pages 47–67.
Routledge.
Pescatore, G. and Rocchi, M. (2019). Narration in medical
dramas i. interpretative hypotheses and research per-
spectives. La valle dell’eden, 1:107–115.
Piper, A., So, R. J., and Bamman, D. (2021). Narrative the-
ory for computational narrative understanding. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 298–311.
Piper, A. and Toubia, O. (2023). A quantitative study of
non-linearity in storytelling. Poetics, 98:101793.
Propp, V. Y. (2012). The Russian Folktale by Vladimir
Yakovlevich Propp. Wayne State University Press.
Qu, R., Tu, R., and Bao, F. (2024). Is semantic chunk-
ing worth the computational cost? arXiv preprint
arXiv:2410.13070.
Radford, A. (2018). Improving language understanding by
generative pre-training.
Reagan, A. J., Mitchell, L., Kiley, D., Danforth, C. M., and
Dodds, P. S. (2016). The emotional arcs of stories
are dominated by six basic shapes. EPJ data science,
5(1):1–12.
Rocchi, M. and Pescatore, G. (2022). Modeling narra-
tive features in tv series: coding and clustering analy-
sis. Humanities and Social Sciences Communications,
9(1):1–11.
Schmidt, B. M. (2015). Plot arceology: A vector-space
model of narrative structure. In 2015 IEEE Inter-
national Conference on Big Data (Big Data), pages
1667–1672. IEEE.
Todorov, T. and Weinstein, A. (1969). Structural analysis
of narrative. In NOVEL: A forum on fiction, volume 3,
pages 70–76. JSTOR.
Vaswani, A. (2017). Attention is all you need. Advances in
Neural Information Processing Systems.
Vimal, B. (2020). Application of logistic regression in nat-
ural language processing. Int J Eng Res, 9.
Wilmot, D. and Keller, F. (2020). Modelling suspense in
short stories as uncertainty reduction over neural rep-
resentation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1763–1788, Online. Association for Computa-
tional Linguistics.
Yin, W., Kann, K., Yu, M., and Sch
¨
utze, H. (2017). Com-
parative study of cnn and rnn for natural language pro-
cessing. arXiv preprint arXiv:1702.01923.
Young, T., Hazarika, D., Poria, S., and Cambria, E. (2018).
Recent trends in deep learning based natural language
processing. ieee Computational intelligenCe maga-
zine, 13(3):55–75.
Yuan, W., Cao, J., Jiang, Z., Kang, Y., Lin, J., Song, K., Yan,
P., Sun, C., Liu, X., et al. (2024). Can large language
models grasp legal theories? enhance legal reasoning
with insights from multi-agent collaboration. arXiv
preprint arXiv:2410.02507.
Zhao, R., Zhang, W., Li, J., Zhu, L., Li, Y., He, Y., and
Gui, L. (2023). Narrativeplay: Interactive narrative
understanding. arXiv preprint arXiv:2310.01459.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
670