
Our vision is to evolve towards a comprehensive
large process model (Kampik et al., 2023). Future
research contributions aim to use historical data for
process mining and insight discovery, train AI mod-
els to recommend new process definitions without
domain expertise and define an advanced framework
with even more assistance for the setup phases for col-
laborative teams.
REFERENCES
Baresi, L., Di Ciccio, C., Mendling, J., Meroni, G., and
Plebani, P. (2017). martifact: an artifact-driven pro-
cess monitoring platform. In Robert Claris
´
o, Hen-
rik Leopold, Jan Mendling, Wil M. P. van der Aalst,
Akhil Kumar, Brian T. Pentland, Mathias Weske,
editor, Proceedings of the BPM Demo Track and
BPM Dissertation Award co-located with 15th In-
ternational Conference on Business Process Model-
ing (BPM 2017), September 13, 2017., pages 1 – 5,
Barcelona, Spain. CEUR Workshop Proceedings.
Baresi, L., Meroni, G., and Plebani, P. (2016). A gsm-based
approach for monitoring cross-organization business
processes using smart objects. In Business Pro-
cess Management Workshops, pages 389–400, Cham.
Springer International Publishing.
Cohn, D. and Hull, R. (2009). Business artifacts: A data-
centric approach to modeling business operations and
processes. IEEE Data Eng. Bull., 32:3–9.
Delgado, A., Calegari, D., and Arrigoni, A. (2016). To-
wards a generic bpms user portal definition for the
execution of business processes. Electronic Notes
in Theoretical Computer Science, 329:39–59. CLEI
2016 - The Latin American Computing Conference.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Burstein,
J., Doran, C., and Solorio, T., editors, Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Min-
nesota. Association for Computational Linguistics.
Due
˜
nas, S., Cosentino, V., Robles, G., and Gonzalez-
Barahona, J. M. (2018). Perceval: Software project
data at your will. In 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering: Compan-
ion (ICSE-Companion), pages 1–4.
Dumas, M. (2011). On the convergence of data and process
engineering. In Proceedings of the 15th International
Conference on Advances in Databases and Informa-
tion Systems, ADBIS’11, page 19–26, Berlin, Heidel-
berg. Springer-Verlag.
Dumas, M., Fournier, F., Limonad, L., Marrella, A., Mon-
tali, M., Rehse, J.-R., Accorsi, R., Calvanese, D.,
De Giacomo, G., Fahland, D., Gal, A., La Rosa, M.,
V
¨
olzer, H., and Weber, I. (2023). AI-augmented busi-
ness process management systems: A research man-
ifesto. ACM Trans. Manage. Inf. Syst., 14(1):11:1–
11:19.
Evermann, J., Rehse, J.-R., and Fettke, P. (2017). Predicting
process behaviour using deep learning. Decision Sup-
port Systems, 100:129–140. Smart Business Process
Management.
Kampik, T., Warmuth, C., Rebmann, A., Agam, R., Egger,
L. N. P., Gerber, A., Hoffart, J., Kolk, J., Herzig, P.,
Decker, G., van der Aa, H., Polyvyanyy, A., Rinderle-
Ma, S., Weber, I., and Weidlich, M. (2023). Large
process models: Business process management in the
age of generative AI.
Leontjeva, A., Conforti, R., Di Francescomarino, C., Du-
mas, M., and Maggi, F. M. (2015). Complex symbolic
sequence encodings for predictive monitoring of busi-
ness processes. In Motahari-Nezhad, H. R., Recker, J.,
and Weidlich, M., editors, Business Process Manage-
ment, pages 297–313, Cham. Springer International
Publishing.
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer,
L. (2019). BART: Denoising sequence-to-sequence
pre-training for natural language generation, transla-
tion, and comprehension.
Metzger, A., Neubauer, A., Bohn, P., and Pohl, K. (2019).
Proactive process adaptation using deep learning en-
sembles. In Giorgini, P. and Weber, B., editors, Ad-
vanced Information Systems Engineering, pages 547–
562, Cham. Springer International Publishing.
Nguyen, M. K., Nhi Tran, H., Ober, I., and Abualsaud, R.
(2024). Ai-augmented framework to enable process
awareness in collaborative teams. In 2024 Interna-
tional Joint Conference on Neural Networks (IJCNN),
pages 1–8, Yokohama, Tokyo. IEEE.
Nguyen, M. K., Tran, H. N., Abualsaud, R., and Ober, I.
(2023). An AI-enhanced process mining framework
for software process insights. In 2023 15th Interna-
tional Conference on Knowledge and Systems Engi-
neering (KSE), October 18-20, 2023, Ha Noi, Viet-
nam, pages 1–6, Hanoi, Vietnam. IEEE. ISSN: 2694-
4804.
Pennington, J., Socher, R., and Manning, C. (2014). Glove:
Global vectors for word representation. volume 14,
pages 1532–1543.
Van der Aalst, W. M. (2021). Hybrid intelligence: to au-
tomate or not to automate, that is the question. Inter-
national Journal of Information Systems and Project
Management, 9(2):5–20.
Weinzierl, S., Zilker, S., Dunzer, S., and Matzner, M.
(2024). Machine learning in business process manage-
ment: A systematic literature review. Expert Systems
with Applications, 253:124181.
MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering
108