
Volume 1, volume 1, pages 28–39. Scitepress, Science
and Technology Publications.
Ding, B., Li, Z., Li, Z., Xue, Y., Chang, X., Su, J., Jin, X.,
and Sun, H. (2024). A ccp-based distributed coopera-
tive operation strategy for multi-agent energy systems
integrated with wind, solar, and buildings. Applied
Energy, 365:123275.
Erhan, L., Ndubuaku, M., Di Mauro, M., Song, W., Chen,
M., Fortino, G., Bagdasar, O., and Liotta, A. (2021).
Smart anomaly detection in sensor systems: A multi-
perspective review. Information Fusion, 67:64–79.
Frost, E., Heiken, J. C., Tr
¨
oschel, M., and Nieße, A.
(2024). Detecting and analyzing agent communica-
tion anomalies in distributed energy system control.
In ICAART (3), pages 625–632.
Frost, E. and Nieße, A. (2024). Communication incidents
in self-organising cyber-physical energy systems: As-
sessing robustness. In 5th International Conference
on Communications, Information, Electronic and En-
ergy Systems (CIEES), pages 1–6.
Fu, C., Arjunan, P., and Miller, C. (2022). Trimming out-
liers using trees: winning solution of the large-scale
energy anomaly detection (lead) competition. In Pro-
ceedings of the 9th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and
Transportation, pages 456–461.
Gupta, K., Sahoo, S., Mohanty, R., Panigrahi, B. K., and
Blaabjerg, F. (2021). Decentralized anomaly char-
acterization certificates in cyber-physical power elec-
tronics based power systems. In 2021 IEEE 22nd
Workshop on Control and Modelling of Power Elec-
tronics (COMPEL), pages 1–6.
Haehner, J., Rudolph, S., Tomforde, S., Fisch, D., Sick, B.,
Kopal, N., and Wacker, A. (2013). A concept for se-
curing cyber-physical systems with organic comput-
ing techniques. In 26th International Conference on
Architecture of Computing Systems 2013, pages 1–13.
Hasanuzzaman Shawon, M., Muyeen, S. M., Ghosh, A., Is-
lam, S. M., and Baptista, M. S. (2019). Multi-Agent
Systems in ICT Enabled Smart Grid: A Status Update
on Technology Framework and Applications. IEEE
Access, 7:97959–97973. Conference Name: IEEE
Access.
Kantert, J., Tomforde, S., M
¨
uller-Schloer, C., Edenhofer, S.,
and Sick, B. (2017). Quantitative robustness-a gener-
alised approach to compare the impact of disturbances
in self-organising systems. In ICAART (1), pages 39–
50.
Krueger, C., Otte, M., Holly, S., Rathjen, S., Wellssow, A.,
and Lehnhoff, S. (2023). Redispatch 3.0–congestion
management for german power grids–considering
controllable resources in low-voltage grids. In ETG
Congress 2023, pages 1–7. VDE.
Nieße, A. and Tr
¨
oschel, M. (2016). Controlled self-
organization in smart grids. In 2016 IEEE Inter-
national Symposium on Systems Engineering (ISSE),
pages 1–6. IEEE.
Radtke, M., Stucke, C., Trauernicht, M., Montag, C., Oest,
F., Frost, E., Bremer, J., and Lehnhoff, S. (2023). Inte-
grating agent-based control for normal operation in in-
terconnected power and communication systems sim-
ulation. In 2023 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), pages 228–233. IEEE.
Ramanan, P., Li, D., and Gebraeel, N. (2022). Blockchain-
based decentralized replay attack detection for large-
scale power systems. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 52(8):4727–4739.
Ren, Y., Yu, J., Zhao, A., Jing, W., Ran, T., and Yang,
X. (2021). A multi-objective operation strategy op-
timization for ice storage systems based on decentral-
ized control structure. Building Services Engineering
Research and Technology, 42(1):62–81.
Richter, U., Mnif, M., Branke, J., M
¨
uller-Schloer, C.,
and Schmeck, H. (2006). Towards a generic ob-
server/controller architecture for organic computing.
INFORMATIK 2006–Informatik f
¨
ur Menschen, Band
1, pages 112–119.
Stark, S., Frost, E., and Nebel-Wenner, M. (2024).
Distributed multi-objective optimization in cyber-
physical energy systems. ACM SIGENERGY Energy
Informatics Review, 4(2):7–18.
Taleb, I., Guerard, G., Fauberteau, F., and Nguyen, N.
(2023). A holonic multi-agent architecture for smart
grids. In ICAART (1), pages 126–134.
Tan, S., Guerrero, J. M., Xie, P., Han, R., and Vasquez,
J. C. (2020). Brief survey on attack detection methods
for cyber-physical systems. IEEE Systems Journal,
14(4):5329–5339.
Tomforde, S., Prothmann, H., Branke, J., H
¨
ahner, J., Mnif,
M., M
¨
uller-Schloer, C., Richter, U., and Schmeck,
H. (2011). Observation and control of organic sys-
tems. Organic computing—a paradigm shift for com-
plex systems, pages 325–338.
Turowski, M., Heidrich, B., Phipps, K., Schmieder, K.,
Neumann, O., Mikut, R., and Hagenmeyer, V. (2022).
Enhancing anomaly detection methods for energy
time series using latent space data representations.
In Proceedings of the Thirteenth ACM International
Conference on Future Energy Systems, pages 208–
227.
Vaswani, A. (2017). Attention is all you need. Advances in
Neural Information Processing Systems.
Xu, J. (2021). Anomaly transformer: Time series anomaly
detection with association discrepancy. arXiv preprint
arXiv:2110.02642.
Yohanandhan, R., Elavarasan, R., Manoharan, P., and
Mihet-Popa, L. (2020). Cyber-physical power system
(cpps): A review on modeling, simulation, and analy-
sis with cyber security applications. IEEE Access, vol.
8, pages 151019–151064.
Zhu, Q. (2019). Multilayer cyber-physical security and re-
silience for smart grid. Smart grid control: overview
and research opportunities, pages 25–239.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
678