
Alshugran, T. and Dichter, J. (2014). Extracting and model-
ing the privacy requirements from HIPAA for health-
care applications. In Proceedings of LISAT ’14.
Blohm, I., Wortmann, F., Legner, C., and Köbler, F. (2024).
Data products, data mesh, and data fabric: New
paradigm(s) for data and analytics? Business & Infor-
mation Systems Engineering, pages 1–10.
Bode, J. et al. (2024). Towards Avoiding the Data Mess:
Industry Insights from Data Mesh Implementations.
arXiv:2302.01713v4 [cs.AI].
Borovits, N., Kumara, I., Tamburri, D. A., and van den
Heuvel, W.-J. (2024). Privacy Engineering in the Data
Mesh: Towards a Decentralized Data Privacy Gov-
ernance Framework. In Proceedings of ICSOC ’23
Workshops.
Chee, C. W. and Sawade, C. (2021). HelloFresh Journey
to the Data Mesh. HelloFresh Engineering Blog, Hel-
loTech.
Dehghani, Z. (2019). How to Move Beyond a Mono-
lithic Data Lake to a Distributed Data Mesh. mart-
inFowler.com.
Dehghani, Z. (2022). Data Mesh: Delivering Data-Driven
Value at Scale. O’Reilly Media, Sebastopol, CA, USA.
Deshkar, P. A. et al. (2023). Studies on the Use of Vari-
ous Noise Strategies for Perturbing Data in Privacy-
Preserving Data Mining. International Journal of
Intelligent Systems and Applications in Engineering,
12(8s):281–289.
Driessen, S., Monsieur, G., and van den Heuvel, W.-J.
(2023a). Data Product Metadata Management: An
Industrial Perspective. In Proceedings of ICSOC ’22
Workshops.
Driessen, S., van den Heuvel, W.-J., and Monsieur, G.
(2023b). ProMoTe: A Data Product Model Template
for Data Meshes. In Proceedings of ER ’23.
Eichler, R. et al. (2021). Enterprise-Wide Metadata Man-
agement: An Industry Case on the Current State and
Challenges. In Proceedings of BIS ’21.
Falconi, M. and Plebani, P. (2023). Adopting Data Mesh
principles to Boost Data Sharing for Clinical Trials. In
Proceedings of ICDH ’23.
Goedegebuure, A. et al. (2024). Data Mesh: A Systematic
Gray Literature Review. arXiv:2304.01062v2 [cs.SE].
González-Velázquez, R. et al. (2024). Smart Factory Hub –
Towards a Data Mesh in Smart Manufacturing. Proce-
dia Computer Science, 232:2709–2719.
Hasan, M. R. and Legner, C. (2023). Understanding Data
Products: Motivations, Definition, and Categories. In
Proceedings of ECIS ’23.
He, Q. and Antón, A. (2003). A Framework for Modeling
Privacy Requirements in Role Engineering. In Pro-
ceedings of REFSQ ’03.
Houser, K. A. and Bagby, J. W. (2023). The Data Trust
Solution to Data Sharing Problems. Vanderbilt Journal
of Entertainment and Technology Law, 25(1):113–180.
Huang, G. et al. (2015). A Data as a Product Model for
Future Consumption of Big Stream Data in Clouds. In
Proceedings of SCC ’15.
Jeffar, F. and Plebani, P. (2024). Federated Data Products: A
Confluence of Data Mesh and Gaia-X for Data Sharing.
In Proceedings of ICSOC ’23 Workshops.
Joshi, D., Pratik, S., and Rao, M. P. (2021). Data Governance
in Data Mesh Infrastructures: The Saxo Bank Case
Study. In Proceedings of ICEB ’21.
Lei, B. et al. (2022). Data Mesh — A Data Movement and
Processing Platform @ Netflix. Netflix Technology
Blog, Netflix Technology Blog.
Machado, I., Costa, C., and Santos, M. Y. (2021). Data-
Driven Information Systems: The Data Mesh Paradigm
Shift. In Proceedings of ISD ’21.
Majeed, A. and Lee, S. (2021). Anonymization Techniques
for Privacy Preserving Data Publishing: A Comprehen-
sive Survey. IEEE Access, 9:8512–8545.
McSherry, F. D. (2009). Privacy integrated queries: an ex-
tensible platform for privacy-preserving data analysis.
In Proceedings of SIGMOD ’09.
Miyazaki, S., Mead, N., and Zhan, J. (2009). Computer-
Aided Privacy Requirements Elicitation Technique. In
Proceedings of APSCC ’08.
Murmann, P., Reinhardt, D., and Fischer-Hübner, S. (2019).
To Be, or Not to Be Notified: Eliciting Privacy Noti-
fication Preferences for Online mHealth Services. In
Proceedings of IFIP SEC ’19.
Pearson, S. and Casassa-Mont, M. (2011). Sticky Policies:
An Approach for Managing Privacy across Multiple
Parties. Computer, 44(9):60–68.
Podlesny, N. J., Kayem, A. V. D. M., and Meinel, C. (2022).
CoK: A Survey of Privacy Challenges in Relation to
Data Meshes. In Proceedings of DEXA ’22.
Quach, S. et al. (2022). Digital technologies: tensions in
privacy and data. Journal of the Academy of Marketing
Science, 50(6):1299–1323.
Reiberg, A., Niebel, C., and Kraemer, P. (2022). What Is a
Data Space? Technical report, Gaia-X Hub Germany.
Stach, C. (2023). Data Is the New Oil–Sort of: A View on
Why This Comparison Is Misleading and Its Implica-
tions for Modern Data Administration. Future Internet,
15(2):1–49.
Stach, C. et al. (2022). Demand-Driven Data Provisioning
in Data Lakes: BARENTS—A Tailorable Data Prepa-
ration Zone. In Proceedings of iiWAS ’21.
Stach, C., Gritti, C., and Mitschang, B. (2020). Bringing
Privacy Control Back to Citizens: DISPEL — A Dis-
tributed Privacy Management Platform for the Internet
of Things. In Proceedings of SAC ’20.
Stach, C. and Steimle, F. (2019). Recommender-based pri-
vacy requirements elicitation – EPICUREAN: an ap-
proach to simplify privacy settings in IoT applications
with respect to the GDPR. In Proceedings of SAC ’19.
ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy
106