devel- opment of agent-based cyber-physical systems.
IFAC- PapersOnLine, 52(25):258–263.
Benaben, F., Lauras, M., Fertier, A., and Salatge´, N. (2019).
Integrating model-driven engineering as the next chal-
lenge for artificial intelligence – application to risk and
crisis management. In 2019 Winter Simulation
Conference (WSC), pages 1549–1563.
Bhadra, M., Lopera, D. S., Kunzelmann, R., and Ecker,
W. (2024). A model-driven architecture approach to
accelerate software code generation. In 2024 7th In-
ternational Conference on Software and System Engi-
neering (ICoSSE), pages 23–30. IEEE.
Binder, C., Cala`, A., Vollmar, J., Neureiter, C., and Lu¨der,
A. (2021). Automated model transformation in mod-
eling digital twins of industrial internet-of-things ap-
plications utilizing automationml. In 2021 26th IEEE
International Conference on Emerging Technologies
and Factory Automation (ETFA ), pages 1–6.
Binder, C., Neureiter, C., and Lu¨der, A. (2022). Towards a
domain-specific information architecture enabling the
investigation and optimization of flexible production
systems by utilizing artificial intelligence. The In-
ternational Journal of Advanced Manufacturing Tech-
nology, 123(1):49–81.
Biswas, N., Mondal, A. S., Kusumastuti, A., Saha, S., and
Mondal, K. C. (2022). Automated credit assessment
framework using etl process and machine learning. In-
novations in Systems and Software Engineering, pages
1–14.
Brandon, C., Boßelmann, S., Singh, A., Ryan, S.,
Schieweck, A., Fennell, E., Steffen, B., and Mar-
garia, T. (2024). Cinco de bio: A low-code platform
for domain-specific workflows for biomedical imag-
ing research. BioMedInformatics, 4(3):1865–1883.
Bruneliere, H., Muttillo, V., Eramo, R., Berardinelli, L.,
Gómez, A., Bagnato, A., Sadovykh, A., and Cicchetti,
A. (2022). Aidoart: Ai-augmented automation for de-
vops, a model-based framework for continuous devel-
opment in cyber–physical systems. Microprocessors
and Microsystems, 94:104672.
Chang, W., Wei, R., Zhao, S., Wellings, A., Woodcock, J.,
and Burns, A. (2020). Development automation of
real-time java: Model-driven transformation and syn-
thesis. ACM Transactions on Embedded Computing
Systems (TECS), 19(5):1–26.
Dorodnykh, N. O., Yurin, A. Y., and Stolbov, A. B. (2018).
Ontology driven development of rule-based expert
systems. In 2018 3rd Russian-Pacific Conference on
Computer Technology and Applications (RPC), pages
1–6.
Eramo, R., Said, B., Oriol, M., Bruneliere, H., and Morales,
S. (2024). An architecture for model-based and intel-
ligent automation in devops. Journal of Systems and
Software, 217:112180.
Houghtaling, M. A., Fiorini, S. R., Fabiano, N.,
Gonc¸alves, P. J. S., Ulgen, O., Haidegger, T.,
Carbonera, J. L., Olszewska, J. I., Page, B., Murahwi,
Z., and Prestes,
E. (2024). Standardizing an ontology for ethically
aligned robotic and autonomous systems. IEEE
Transactions on Systems, Man, and Cybernetics:
Systems, 54(3):1791–1804.
Iyenghar, P., Otte, F., and Pulvermueller, E. (2022). Ai-
guided model-driven embedded software engineering.
In MODELSWARD, pages 395–404.
Khalfi, M. F., Tabbiche, M. N., and Adjoudj, R.
(2024). From programming-to-modeling-to-prompts
smart ubiquitous applications. Journal of Ambient In-
telligence and Smart Environments, (Preprint):1–39.
Koseler, K., McGraw, K., and Stephan, M. (2019). Realiza-
tion of a machine learning domain specific modeling
language: A baseball analytics case study. In MOD-
ELSWARD, pages 13–24.
Kouissi, M., Ghouch, N. E., and En-naimi, E. M. (2019).
New approach for modeling and developing multi-
agent systems based on case based reasoning. In Pro-
ceedings of the 4th International Conference on Smart
City Applications, pages 1–8.
Kulkarni, V., Reddy, S., Barat, S., and Dutta, J. (2023). To-
ward a symbiotic approach leveraging generative ai for
model driven engineering. In 2023 ACM/IEEE 26th
International Conference on Model Driven En-
gineering Languages and Systems (MODELS), pages
184–193. IEEE.
Lano, K. and Xue, Q. (2023). Code generation by exam-
ple using symbolic machine learning. SN Computer
Science, 4(2):170.
Li, X.-S., Tao, X.-P., Song, W., and Dong, K. (2018).
Aocml: A domain-specific language for model-driven
development of activity-oriented context-aware appli-
cations. Journal of Computer Science and Technology,
33:900–917.
Liu, H., Shen, M., Zhu, J., Niu, N., Li, G., and Zhang, L.
(2020). Deep learning based program generation from
requirements text: Are we there yet? IEEE Transac-
tions on Software Engineering, 48(4):1268–1289.
Lopes, R., Arau´jo, J., da Silveira, D. S., and Sardinha, A.
(2024). A systematic approach to derive conceptual
models from bpmn models. In International Sym-
posium on Business Modeling and Software Design,
pages 83–96. Springer.
López, J. A. H., Ca´novas Izquierdo, J. L., and Cuadrado, J.
S. (2022). Modelset: a dataset for machine learning in
model-driven engineering. Software and Systems
Modeling, pages 1–20.
Maass, W. and Storey, V. C. (2021). Pairing conceptual
modeling with machine learning. Data & Knowledge
Engineering, 134:101909.
Meyma, M. M., Laaz, N., and Mbarki, S. (2022). A
new model-based approach for migrating health 2.0 to
health 3.0 applications. In International Confer- ence
on Advanced Intelligent Systems for Sustainable
Development, pages 673–682. Springer.
Moin, A., Challenger, M., Badii, A., and Gu¨nnemann, S.
(2021). Mde4qai: Towards model-driven engineer- ing
for quantum artificial intelligence. arXiv preprint
arXiv:2107.06708.
Moin, A., Challenger, M., Badii, A., and Gu¨nnemann, S.
(2022). Supporting ai engineering on the iot
edgethrough model-driven tinyml. In 2022 IEEE 46th