
ACKNOWLEDGEMENTS
The publication and the underlying research owe their
existence to the invaluable support extended by the
KKS Lech Pozna
´
n club, which provided access to
datasets.
REFERENCES
Asali, E., Valipour, M., Zare, N., Afshar, A., Katebzadeh,
M., and Dastghaibyfard, G. (2016). Using machine
learning approaches to detect opponent formation.
In 2016 Artificial Intelligence and Robotics (IRA-
NOPEN), pages 140–144. IEEE.
Deliege, A., Cioppa, A., Giancola, S., Seikavandi, M. J.,
Dueholm, J. V., Nasrollahi, K., Ghanem, B., Moes-
lund, T. B., and Van Droogenbroeck, M. (2021).
Soccernet-v2: A dataset and benchmarks for holistic
understanding of broadcast soccer videos. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4508–4519.
Garnier, P. and Gregoir, T. (2021). Evaluating soccer player:
from live camera to deep reinforcement learning.
Girshick, R. (2015). Fast R-CNN. In Proceedings of the
IEEE international conference on computer vision,
pages 1440–1448.
He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017).
Mask R-CNN. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2961–
2969.
He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2018).
Mask R-CNN.
Jiang, Y., Cui, K., Chen, L., Wang, C., and Xu, C. (2020).
SoccerDB: A large-scale database for comprehensive
video understanding. In Proceedings of the 3rd Inter-
national Workshop on Multimedia Content Analysis in
Sports, MM ’20. ACM.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). Ultralytics
YOLOv8.
Kim, H., Kim, B., Chung, D., Yoon, J., and Ko, S.-K.
(2022). SoccerCPD3: Formation and role change-
point detection in soccer matches using spatiotempo-
ral tracking data. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 3146–3156.
Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L.,
and Dollár, P. (2015). Microsoft COCO: Common Ob-
jects in Context.
Liu, H., Adreon, C., Wagnon, N., Bamba, A. L., Li, X.,
Liu, H., MacCall, S., and Gan, Y. (2023). Auto-
mated player identification and indexing using two-
stage deep learning network. Scientific Reports,
13(1):10036.
Liu, S. (2009). Object trajectory estimation using optical
flow. Utah State University.
Nowak, J. (2022). Methods for detecting objects in video
image and their application in the analysis of sports
recordings. Master’s thesis, Adam Mickiewicz Uni-
versity in Poznan.
Nowak, J. and Dyczkowski, K. (2022). ODATT - Object
Detection Algorithms Test Tool.
Nowak, J., Galla, Z., and Dyczkowski, K. (2022). FV2D -
Fotball video to 2 dimensionnal pitch.
Padilla, R., Passos, W. L., Dias, T. L. B., Netto, S. L., and
da Silva, E. A. B. (2021). A comparative analysis
of object detection metrics with a companion open-
source toolkit. Electronics, 10(3).
Pei, Y., Biswas, S., Fussell, D. S., and Pingali, K. (2019).
An elementary introduction to kalman filtering.
Piłka, T., Grzelak, B., Sadurska, A., Górecki, T., and Dy-
czkowski, K. (2023). Predicting injuries in football
based on data collected from GPS-based wearable
sensors. Sensors, 23(3).
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Reis, D., Kupec, J., Hong, J., and Daoudi, A. (2023). Real-
time flying object detection with YOLOv8. arXiv
preprint arXiv:2305.09972.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-
CNN: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28.
Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster R-
CNN: Towards real-time object detection with region
proposal networks.
Sadurska, A., Piłka, T., Grzelak, B., Górecki, T., Dy-
czkowski, K., and Zar˛eba, M. (2023). Fusion of a
fuzzy rule-based method and other decision-making
models in injury prediction problem in football. In
2023 IEEE International Conference on Fuzzy Sys-
tems (FUZZ), pages 1–6.
Wang, Y., Chen, X., Cao, L., Huang, W., Sun, F., and
Wang, Y. (2022). Multimodal token fusion for vision
transformers. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 12186–12195.
Wojke, N., Bewley, A., and Paulus, D. (2017). Simple on-
line and realtime tracking with a deep association met-
ric.
Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Gir-
shick, R. (2019). Detectron2. https://github.com/
facebookresearch/detectron2.
Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017).
Aggregated residual transformations for deep neural
networks.
Zoph, B., Cubuk, E. D., Ghiasi, G., Lin, T.-Y., Shlens, J.,
and Le, Q. V. (2020). Learning data augmentation
strategies for object detection. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXVII 16,
pages 566–583. Springer.
Advanced Vision Techniques in Soccer Match Analysis: From Detection to Classification
815