
Intelligence Research” - Spoke 8 ”Pervasive AI”,
funded by the European Commission under the
NextGeneration EU programme.
PNRR - M4C2 - I1.4, CN00000013 - ”ICSC –
Centro Nazionale di Ricerca in High Performance
Computing, Big Data and Quantum Computing”
- Spoke 8 ”In Silico medicine and Omics Data”,
both funded by the European Commission under the
NextGeneration EU programme.
The National Institute for Nuclear Physics (INFN)
within the next AIM (Artificial Intelligence in
Medicine: next steps) research project (INFN-
CSN5), https://www.pi.infn.it/aim.
The views and opinions expressed are those of the
authors only and do not necessarily reflect those of
the European Union or the European Commission.
Neither the European Union nor the European Com-
mission can be held responsible for them.
REFERENCES
American Association of Physicists in Medicine (AAPM)
(2023). Lung Cancer Screening CT Protocols Version
6.0. AAPM. Accessed online.
American College of Radiology (ACR) (2023).
ACR–SABI–SPR–STR Practice Parameter for
the Performance of Thoracic Computed Tomography
(CT). American College of Radiology. Practice
parameters for thoracic CT imaging.
Baldwin, D., Duffy, S., Wald, N., Page, R., Hansell, D.,
and Field, J. (2011). Uk lung screen (ukls) nodule
management protocol: modelling of a single screen
randomised controlled trial of low-dose ct screening
for lung cancer. Thorax, 66(4):308–313.
European Society of Thoracic Imaging (ESTI) (2019).
Chest CT for Lung Cancer Screening: ESTI Techni-
cal Standards. ESTI. Technical standards for lung
cancer screening CT.
Frix, A.-N., Cousin, F., Refaee, T., Bottari, F.,
Vaidyanathan, A., Desir, C., Vos, W., Walsh, S., Oc-
chipinti, M., Lovinfosse, P., et al. (2021). Radiomics
in lung diseases imaging: state-of-the-art for clini-
cians. Journal of Personalized Medicine, 11(7):602.
IAEA (2012). Quality assurance programme for com-
puted tomography: Diagnostic and therapy applica-
tions. IAEA Human Health Series, 19.
Iball, G. R., Darby, M., Gabe, R., Crosbie, P. A., and Callis-
ter, M. E. (2021). Establishing scanning protocols for
a ct lung cancer screening trial in the uk. The British
journal of radiology, 94(1128):20201343.
Koo, T. K. and Li, M. Y. (2016). A guideline of selecting
and reporting intraclass correlation coefficients for re-
liability research. Journal of chiropractic medicine,
15(2):155–163.
Larue, R. T., van Timmeren, J. E., de Jong, E. E., Feliciani,
G., Leijenaar, R. T., Schreurs, W. M., Sosef, M. N.,
Raat, F. H., van der Zande, F. H., Das, M., et al.
(2017). Influence of gray level discretization on ra-
diomic feature stability for different ct scanners, tube
currents and slice thicknesses: a comprehensive phan-
tom study. Acta oncologica, 56(11):1544–1553.
Louis, T., Lucia, F., Cousin, F., Mievis, C., Jansen, N.,
Duysinx, B., Le Pennec, R., Visvikis, D., Neb-
bache, M., Rehn, M., et al. (2024). Identifica-
tion of ct radiomic features robust to acquisition and
segmentation variations for improved prediction of
radiotherapy-treated lung cancer patient recurrence.
Scientific Reports, 14(1):9028.
Mackin, D., Fave, X., Zhang, L., Fried, D., Yang, J., Tay-
lor, B., Rodriguez-Rivera, E., Dodge, C., Jones, A. K.,
et al. (2015). Measuring computed tomography scan-
ner variability of radiomics features. Investigative ra-
diology, 50(11):757–765.
Mail, T. B. (2013). Catphan® 500 and 600 manual. The
Phantom Laboratory.
Marcus, D. S., Olsen, T. R., Ramaratnam, M., and Buckner,
R. L. (2007). The extensible neuroimaging archive
toolkit: an informatics platform for managing, explor-
ing, and sharing neuroimaging data. Neuroinformat-
ics, 5:11–33.
McGraw, K. O. and Wong, S. P. (1996). Forming inferences
about some intraclass correlation coefficients. Psycho-
logical methods, 1(1):30.
Pallotta, S., Cusumano, D., Taddeucci, A., Benelli, M.,
Sulejmeni, R., Lenkowicz, J., Calusi, S., Marrazzo,
L., Talamonti, C., Belli, G., et al. (2020). Po-1536:
Radiomik: a phantom to test repeatability and repro-
ducibility of ct-derived radiomic features. Radiother-
apy and Oncology, 152:S830–S831.
Pegna, A. L., Picozzi, G., Mascalchi, M., Carozzi, F. M.,
Carrozzi, L., Comin, C., Spinelli, C., Falaschi, F.,
Grazzini, M., Innocenti, F., et al. (2009). Design, re-
cruitment and baseline results of the italung trial for
lung cancer screening with low-dose ct. Lung cancer,
64(1):34–40.
Quantitative Imaging Biomarkers Alliance (QIBA) (2018).
QIBA Profile: Small Lung Nodule Volume Assessment
and Monitoring in Low Dose CT Screening.
Saied, M., Raafat, M., Yehia, S., and Khalil, M. M. (2023).
Efficient pulmonary nodules classification using ra-
diomics and different artificial intelligence strategies.
Insights into Imaging, 14(1):91.
Samei, E., Bakalyar, D., Boedeker, K. L., Brady, S., Fan, J.,
Leng, S., Myers, K. J., Popescu, L. M., Ramirez Gi-
raldo, J. C., Ranallo, F., et al. (2019). Performance
evaluation of computed tomography systems: sum-
mary of aapm task group 233. Medical physics,
46(11):e735–e756.
Scapicchio, C., Arezzini, S., Fantacci, M., Formuso, A.,
Kraan, A., Mazzoni, E., Saponaro, S., Tenerani, M.,
and Retico, A. (2024a). Integration and optimiza-
tion of xnat-based platforms for the management of
heterogeneous and multicenter data in biomedical re-
search. In Proceedings of the 13th International Con-
ference on Data Science, Technology and Applications
- DATA, pages 551–558. INSTICC, SciTePress.
Use of Radiomics in Low Dose Chest CT: A Proposal for a Phantom Multi-Centric Study
411