Markers, and Current Treatment Strategies—An
Updated Review. Cancers, 13(17), 4287.
https://doi.org/10.3390/cancers13174287
MacEachern, S. J., & Forkert, N. D. (2021). Machine
learning for precision medicine. Genome, 64(4), 416–
425. https://doi.org/10.1139/gen-2020-0131
Qumsiyeh, E., Bakir-Gungor, B., & Yousef, M. (2024).
Classification of Breast Cancer Molecular Subtypes
with Grouping-Scoring-Modeling Approach that
Incorporates Disease-Disease Association Information.
2024 32nd Signal Processing and Communications
Applications Conference (SIU), 1–4. https://doi.org/
10.1109/SIU61531.2024.10601041
Qumsiyeh, E., Salah, Z., & Yousef, M. (2023).
miRGediNET: A comprehensive examination of
common genes in miRNA-Target interactions and
disease associations: Insights from a grouping-scoring-
modeling approach. Heliyon, 9(12), e22666.
https://doi.org/10.1016/j.heliyon.2023.e22666
Qumsiyeh, E., Showe, L., & Yousef, M. (2022). GediNET
for discovering gene associations across diseases using
knowledge based machine learning approach. Scientific
Reports, 12(1), Article 1. https://doi.org/10.1038/s415
98-022-24421-0
Qumsiyeh, E., Yazıcı, M., & Yousef, M. (2023).
GediNETPro: Discovering Patterns of Disease Groups.
Proceedings of the 16th International Joint Conference
on Biomedical Engineering Systems and Technologies
- BIOINFORMATICS, 195–203. https://doi.org/10.52
20/0011690800003414
Qumsiyeh, E., Yousef, M., Salah, Z., & Jayousi, R. (2023).
Detecting Semantic Similarity of Diseases based
Machine Learning. 2023 IEEE International
Conference on Bioinformatics and Biomedicine
(BIBM), 3118–3124. https://doi.org/10.1109/BIBM5
8861.2023.10385728
Qumsiyeh, E., Yousef, M., & Yousef, M. (2024). ReScore
Disease Groups Based on Multiple Machine Learnings
Utilizing the Grouping-Scoring-Modeling Approach:
Proceedings of the 17th International Joint Conference
on Biomedical Engineering Systems and Technologies,
446–453. https://doi.org/10.5220/0012379400003657
Tomczak, K., Czerwińska, P., & Wiznerowicz, M. (2015).
The Cancer Genome Atlas (TCGA): An immeasurable
source of knowledge. Contemporary Oncology, 19(1A),
A68–A77. https://doi.org/10.5114/wo.2014.47136
Xu, Q.-S., & Liang, Y.-Z. (2001). Monte Carlo cross
validation. Chemometrics and Intelligent Laboratory
Systems, 56(1), 1–11. https://doi.org/10.1016/S0169-
7439(00)00122-2
Yousef, M., Abdallah, L., & Allmer, J. (2019). maTE:
Discovering expressed interactions between microRNAs
and their targets. Bioinformatics, 35(20), 4020–4028.
https://doi.org/10.1093/bioinformatics/btz204
Yousef, M., Allmer, J., İnal, Y., & Gungor, B. B. (2024).
G-S-M: A Comprehensive Framework for Integrative
Feature Selection in Omics Data Analysis and Beyond
(p. 2024.03.30.585514). bioRxiv. https://doi.org/
10.1101/2024.03.30.585514
Yousef, M., Bakir-Gungor, B., Jabeer, A., Goy, G.,
Qureshi, R., & C. Showe, L. (2021). Recursive Cluster
Elimination based Rank Function (SVM-RCE-R)
implemented in KNIME. F1000Research, 9, 1255.
https://doi.org/10.12688/f1000research.26880.2
Yousef, M., Goy, G., & Bakir-Gungor, B. (2022).
miRModuleNet: Detecting miRNA-mRNA Regulatory
Modules. Frontiers in Genetics, 13, 767455.
https://doi.org/10.3389/fgene.2022.767455
Yousef, M., Goy, G., Mitra, R., Eischen, C. M., Jabeer, A.,
& Bakir-Gungor, B. (2021). miRcorrNet: Machine
learning-based integration of miRNA and mRNA
expression profiles, combined with feature grouping
and ranking. PeerJ, 9, e11458. https://doi.org/10.7717/
peerj.11458
Yousef, M., Jabeer, A., & Bakir-Gungor, B. (2021). SVM-
RCE-R-OPT: Optimization of Scoring Function for
SVM-RCE-R. In G. Kotsis, A. M. Tjoa, I. Khalil, B.
Moser, A. Mashkoor, J. Sametinger, A. Fensel, J.
Martinez-Gil, L. Fischer, G. Czech, F. Sobieczky, & S.
Khan (Eds.), Database and Expert Systems
Applications—DEXA 2021 Workshops (pp. 215–224).
Springer International Publishing. https://doi.org/10.10
07/978-3-030-87101-7_21
Yousef, M., Ozdemir, F., Jaaber, A., Allmer, J., & Bakir-
Gungor, B. (2022). PriPath: Identifying Dysregulated
Pathways from Differential Gene Expression via
Grouping, Scoring and Modeling with an Embedded
Machine Learning Approach [Preprint]. In Review.
https://doi.org/10.21203/rs.3.rs-1449467/v1
Yousef, M., Ülgen, E., & Uğur Sezerman, O. (2021).
CogNet: Classification of gene expression data based
on ranked active-subnetwork-oriented KEGG pathway
enrichment analysis. PeerJ. Computer Science, 7, e336.
https://doi.org/10.7717/peerj-cs.336
Dalianis, H. (2018). Evaluation Metrics and Evaluation. In
H. Dalianis (Ed.), Clinical Text Mining: Secondary Use
of Electronic Patient Records (pp. 45–53). Springer
International Publishing. https://doi.org/10.1007/978-
3-319-78503-5_6
Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D.,
Wiegers, J., Wiegers, T. C., & Mattingly, C. J. (2021).
Comparative Toxicogenomics Database (CTD):
Update 2021. Nucleic Acids Research, 49(D1), D1138–
D1143. https://doi.org/10.1093/nar/gkaa891
Hsu, S.-D., Lin, F.-M., Wu, W.-Y., Liang, C., Huang, W.-
C., Chan, W.-L., Tsai, W.-T., Chen, G.-Z., Lee, C.-J.,
Chiu, C.-M., Chien, C.-H., Wu, M.-C., Huang, C.-Y.,
Tsou, A.-P., & Huang, H.-D. (2011). miRTarBase: A
database curates experimentally validated microRNA–
target interactions. Nucleic Acids Research,
39(suppl_1), D163–D169. https://doi.org/10.1093/nar/
gkq1107
Jabeer, A., Temiz, M., Bakir-Gungor, B., & Yousef, M.
(2023). miRdisNET: Discovering microRNA
biomarkers that are associated with diseases utilizing
biological knowledge-based machine learning.
Frontiers in Genetics, 13. https://www.frontiersin.org/
articles/10.3389/fgene.2022.1076554