Harris, J. (2018). Leo Kanner and autism: a 75-year
perspective. International review of psychiatry, 30(1),
3-17.
Hassouneh, A., Mutawa, A. M., & Murugappan, M. (2020).
Development of a real-time emotion recognition system
using facial expressions and EEG based on machine
learning and deep neural network methods.
Informatics in Medicine Unlocked, 20, 100372.
Hauser, M., Sariyanidi, E., Tunc, B., Zampella, C., Brodkin,
E., Schultz, R. T., & Parish-Morris, J. (2019, June).
Using natural conversations to classify autism with
limited data: Age matters. In Proceedings of the
Sixth Workshop on Computational Linguistics and Clinical
Psychology (pp. 45-54).
Kojovic, N., Natraj, S., Mohanty, S.P., Maillart, T., Schaer,
M., 2021. Using 2d video-based pose estimation for
automated prediction of autism spectrum disorders in
young children. Scientific Reports 11, 1–10.
Kolvin, I. (1971). Studies in the childhood psychoses I.
Diagnostic criteria and classification. The British
Journal of Psychiatry, 118(545), 381-384.
Lau, J. C., Patel, S., Kang, X., Nayar, K., Martin, G. E.,
Choy, J., ... & Losh, M. (2022). Cross-linguistic
patterns of speech prosodic differences in autism: A
machine learning study. PloS one, 17(6), e0269637
Leo, M., Carcagn`ı, P., Distante, C., Spagnolo, P., Mazzeo,
P.L., Rosato, A.C., Petrocchi, S., Pellegrino, C.,
Levante, A., De Lume,` F., et al., 2018b. Computational
assessment of facial expression production in asd
children. Sensors 18, 3993.
Leo, M., Carcagn`ı, P., Del Coco, M., Spagnolo, P.,
Mazzeo, P.L., Celeste, G., Distante, C., Lecciso, F.,
Levante, A., Rosato, A.C., et al., 2018a. Towards the
automatic assessment of abilities to produce facial
expressions: The case study of children with asd, in:
20th Italian National Conference on Photonic
Technologies (Fotonica 2018), IET. pp. 1–4.
Lewis, G. (1996). DSM-IV. Diagnostic and Statistical
Manual of Mental Disorders, 4th edn. By the American
Psychiatric Association.(Pp. 886;£ 34.95.) APA:
Washington, DC. 1994. Psychological Medicine, 26(3),
651-652.
Li, B., Sharma, A., Meng, J., Purushwalkam, S., & Gowen,
E. (2017). Applying machine learning to identify
autistic adults using imitation: An exploratory study.
PloS one, 12(8), e0182652.
Liaqat, S., Wu, C., Duggirala, P.R., Cheung, S.c.S., Chuah,
C.N., Ozonof, S., Young, G., 2021. Predicting asd
diagnosis in children with synthetic and image-based
eye gaze data. Signal Processing: Image
Communication 94, 116198.
Liu, D., Liu, Z., Yang, Q., Huang, Y., & Prud’Hommeaux,
E. (2022, October). Evaluating the performance of
transformer-based language models for neuroatypical
language. In Proceedings of COLING. International
Conference on Computational Linguistics (Vol. 2022,
p. 3412). NIH Public Access.
Liu, W., Li, M., & Yi, L. (2016). Identifying children with
autism spectrum disorder based on their face processing
abnormality: A machine learning framework. Autism
Research, 9(8), 888-898.
Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A.,
& Pickles, A. (2006). Autism from 2 to 9 years of
age. Archives of general psychiatry, 63(6), 694-701.
Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal,
B. L., DiLavore, P. C., ... & Rutter, M. (2000). The
Autism Diagnostic Observation Schedule—Generic: A
standard measure of social and communication deficits
associated with the spectrum of autism. Journal of
autism and developmental disorders, 30, 205-223.
Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism
Diagnostic Interview-Revised: a revised version of a
diagnostic interview for caregivers of individuals with
possible pervasive developmental disorders. Journal of
autism and developmental disorders, 24(5), 659-685.
Mash, L. E., Keehn, B., Linke, A. C., Liu, T. T., Helm, J.
L., Haist, F., ... & Müller, R. A. (2020). Atypical
relationships between spontaneous EEG and fMRI
activity in autism. Brain connectivity, 10(1), 18-28.
Mezghani, A., Slimen, S., & Kherallah, M. (2024). Skin
Lesions Diagnosis Using ML and DL Classification
Models. International Journal of Computer
Information Systems and Industrial Management
Applications, 16(2), 17-17.
Mezghani, A., Elleuch, M., Gasmi, S., & Kherallah, M.
(2024). Toward Arabic social networks unmasking
toxicity using machine learning and deep learning
models. International Journal of Intelligent Systems
Technologies and Applications, 22(3), 260-280.
Nakai, Y., Takiguchi, T., Matsui, G., Yamaoka, N., Takada,
S. (2017). Detecting abnormal word utterances in
children with autism spectrum disorders: machine-
learning-based voice analysis versus speech therapists.
Perceptual and motor skills, 124(5), 961- 973.
Nakano, T., Tanaka, K., Endo, Y., Yamane, Y., Yamamoto,
T., Nakano, Y., ... & Kitazawa, S. (2010). Atypical gaze
patterns in children and adults with autism spectrum
disorders dissociated from developmental changes in
gaze behaviour. Proceedings of the Royal Society B:
Biological Sciences, 277(1696), 2935-2943.
Pan, L., Liu, J., Shi, M., Wong, C. W., Chan, K. H. K.
(2021). Identifying autism spectrum disorder based on
individual-aware down-sampling and multimodal
learning. arXiv preprint arXiv:2109.09129.
Park, K. W., & Cho, S. B. (2023). A residual graph
convolutional network with spatio-temporal features
for autism classification from fMRI brain images.
Applied Soft Computing, 142, 110363.
Piosenka, G., 2021. Detect autism from a facial image.
Plank, I. S., Koehler, J. C., Nelson, A. M., Koutsouleris,
N., & Falter-Wagner, C. M. (2023). Automated
extraction of speech and turn-taking parameters in
autism allows for diagnostic classification using a
multivariable prediction model. Frontiers in
Psychiatry, 14, 1257569.
Prakash, V.G., Kohli, M., Kohli, S., Prathosh, A., Wadhera,
T., Das, D., Panigrahi, D., Kommu, J.V.S. (2023).
Computer vision-based assessment of autistic children: