
Kipp, M., Heloir, A., and Nguyen, Q. (2011). ign language
avatars:animation and comprehensibility. In Intelli-
gent Virtual Agents: 10th International Conference,
IVA 2011, Reykjavik, Iceland, September 15-17, 2011.
Proceedings 11, pages 113–126. Springer.
Koller, O., Zargaran, S., Ney, H., and Bowden, R. (2015).
Continuous sign language recognition: Towards large
vocabulary statistical recognition systems handling
multiple signers. Computer Vision and Image Under-
standing, 141:108–125.
Latif, G., Mohammad, N., AlKhalaf, R., AlKhalaf, R., Al-
ghazo, J., and Khan, M. (2020). An automatic arabic
sign language recognition system based on deep cnn:
An assistive system for the deaf and hard of hearing.
International Journal of Computing and Digital Sys-
tems, 9(4):715–724.
Luqman, H. and El-Alfy, E.-S. M. (2021). Towards hy-
brid multimodal manual and non-manual arabic sign
language recognition: marsl database and pilot study.
Electronics, 10(14):1739.
McDonald, J., Wolfe, R., Schnepp, J., Hochgesang, J., Jam-
rozik, D. G., Stumbo, M., Berke, L., Bialek, M., and
Thomas, F. (2016). An automated technique for real-
time production of lifelike animations of american
sign language. Universal Access in the Information
Society, 15:551–566.
Miah, A. S. M., Hasan, M. A. M., Jang, S.-W., Lee, H.-S.,
and Shin, J. (2023). Multi-stream general and graph-
based deep neural networks for skeleton-based sign
language recognition.
Mohamed, A., Nasser, N., and Sharaf, N. (2021). Auto-
matic code-switched lecture annotation. In Interactive
Mobile Communication, Technologies and Learning,
pages 464–477. Springer.
Mohamed, N. A. E. (2024). Arabic sign language and vi-
tal signs monitoring using smart gloves for the deaf.
Engineering Research Journal (Shoubra), 53(2):185–
191.
Mosleh, M. A., Assiri, A., Gumaei, A. H., Alkhamees,
B. F., and Al-Qahtani, M. (2024). A bidirectional ara-
bic sign language framework using deep learning and
fuzzy matching score. Mathematics, 12(8):1155.
Moustafa, A., Rahim, M. M., Khattab, M. M., Zeki, A. M.,
Matter, S. S., Soliman, A. M., and Ahmed, A. M.
(2024). Arabic sign language recognition systems: A
systematic review. Indian Journal of Computer Sci-
ence and Engineering, 15:1–18.
Nabil, M., Abdalla, A., Sharaf, N., and Sabty, C. (2024).
Bridging the gap: developing an automatic speech
recognition system for egyptian dialect integration
into chatbots. In International Conference on Appli-
cations of Natural Language to Information Systems,
pages 119–125. Springer.
Nasser, N., Salah, J., Sharaf, N., and Abdennadher, S.
(2020). Automatic lecture annotation. In 2020 IEEE
Frontiers in Education Conference (FIE), pages 1–9.
IEEE.
Natarajan, B. and Elakkiya, R. (2022). Dynamic gan
for high-quality sign language video generation from
skeletal poses using generative adversarial networks.
Soft Computing, 26(23):13153–13175.
Neidle, C., Thangali, A., and Sclaroff, S. (2012). Chal-
lenges in development of the american sign language
lexicon video dataset (asllvd) corpus. Proceedings of
LREC.
Papastratis, I., Chatzikonstantinou, C., Konstantinidis, D.,
Dimitropoulos, K., and Daras, P. (2021). Artificial
intelligence technologies for sign language. Sensors,
21(17):5843.
Podder, K. K., Ezeddin, M., Chowdhury, M. E., Sumon, M.
S. I., Tahir, A. M., Ayari, M. A., Dutta, P., Khandakar,
A., Mahbub, Z. B., and Kadir, M. A. (2023). Signer-
independent arabic sign language recognition system
using deep learning model. Sensors, 23(16):7156.
Prikhodko, A., Grif, M., and Bakaev, M. (2020). Sign lan-
guage recognition based on notations and neural net-
works. In Digital Transformation and Global Society:
5th International Conference, DTGS 2020, St. Peters-
burg, Russia, June 17–19, 2020, Revised Selected Pa-
pers 5, pages 463–478. Springer.
Rastgoo, R., Kiani, K., and Escalera, S. (2020). Hand sign
language recognition using multi-view hand skeleton.
Expert Systems with Applications, 150:113336.
Ren, Z., Yuan, J., Meng, Z., and Zhang, J. (2013). Robust
part-based hand gesture recognition using kinect sen-
sor. In IEEE Transactions on Multimedia, volume 15,
pages 1110–1120. IEEE.
Safwat, S., Salem, M. A.-M., and Sharaf, N. (2023). Build-
ing an egyptian-arabic speech corpus for emotion
analysis using deep learning. In Pacific Rim Inter-
national Conference on Artificial Intelligence, pages
320–332. Springer.
Stoll, S., Camgoz, N. C., Hadfield, S., and Bowden, R.
(2020). Text2sign: Towards sign language production
using neural machine translation and generative ad-
versarial networks. In International Journal of Com-
puter Vision (IJCV).
Tharwat, G., Ahmed, A. M., and Bouallegue, B. (2021).
Arabic sign language recognition system for alphabets
using machine learning techniques. Journal of Elec-
trical and Computer Engineering, 2021(1):2995851.
Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Atten-
tion is all you need. Advances in Neural Information
Processing Systems.
Younes, S. M., Gamalel-Din, S. A., Rohaim, M. A., and
Elnabawy, M. A. (2023). Automatic translation of
arabic text to arabic sign language using deep learn-
ing. Journal of Al-Azhar University Engineering Sec-
tor, 18(68):566–579.
Zhang, H., Li, W., Liu, J., Chen, Z., Cui, Y., Wang, Y., and
Xiong, R. (2022). Kinematic motion retargeting via
neural latent optimization for learning sign language.
IEEE Robotics and Automation Letters, 7(2):4582–
4589.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
1426