
Cho, Y., Jang, H., Malav, R., Pandey, G., and Kim, A.
(2020). Underwater image dehazing via unpaired
image-to-image translation. International Journal of
Control, Automation and Systems, 18:605–614.
Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro:
measuring error on simplified surfaces. In Computer
Graphics Forum, volume 17, pages 167–174. Black-
well Publishers.
Correia, H. A. and Brito, J. H. (2023). 3d reconstruction
of human bodies from single-view and multi-view im-
ages: A systematic review. Computer Methods and
Programs in Biomedicine, 239:107620.
Cui, D., Wang, W., Hu, W., Peng, J., Zhao, Y., Zhang,
Y., and Wang, J. (2024). 3d reconstruction of build-
ing structures incorporating neural radiation fields and
geometric constraints. Automation in Construction,
165:105517.
Darmon, F., Basc
´
ole, B., Devaux, J.-C., Souhila, P., and
Aubry, M. (2022). Improving neural implicit surfaces
geometry with patch warping. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6260–6269.
De Reu, J., De Smedt, P., Herremans, D., Van Meirvenne,
M., Laloo, P., and De Clercq, W. (2014). On introduc-
ing an image-based 3d reconstruction method in ar-
chaeological excavation practice. Journal of Archae-
ological Science, 41:251–262.
Fu, Q., Sun, Q., Yew, T.-W., and Tiao, W. (2022). Geo-
neus: Geometry-consistent neural implicit surfaces
learning for multi-view reconstruction. arXiv preprint
arXiv:2205.15848.
Furukawa, Y. and Ponce, J. (2009). Accurate, dense, and ro-
bust multiview stereopsis. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 32(8):1362–
1376.
Galliani, S., Lasinger, K., and Schindler, K. (2015). Mas-
sively parallel multiview stereopsis by surface normal
diffusion. In Proceedings of the IEEE International
Conference on Computer Vision, pages 873–881.
Hou, G., Zhao, X., Pan, Z., Yang, H., Tan, L., and Li, J.
(2020). Benchmarking underwater image enhance-
ment and restoration, and beyond. IEEE Access,
8:122078–122091.
Huang, P.-H., Kopf, J., Ahuja, N., Bleyer, M., Lenz, J.,
and Xu, J.-B. (2018). Deepmvs: Learning multi-view
stereopsis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2821–2830.
Huang, S., Wang, K., Liu, H., Chen, J., and Li, Y. (2023).
Contrastive semi-supervised learning for underwater
image restoration via reliable bank. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18145–18155.
Irschick, D. J., Christiansen, F., Hammerschlag, N., Martin,
J., Madsen, P. T., Wyneken, J., Brooks, A., Gleiss, A.,
Fossette, S., Siler, C., Gamble, T., Fish, F., Siebert,
U., Patel, J., Xu, Z., Kalogerakis, E., Medina, J.,
Mukherji, A., Mandica, M., Zotos, S., Detwiler, J.,
Perot, B., and Lauder, G. (2022). 3d visualization pro-
cesses for recreating and studying organismal form.
iScience, 25(9):104867.
Islam, M. J., Luo, P., and Sattar, J. (2020). Simulta-
neous Enhancement and Super-Resolution of Under-
water Imagery for Improved Visual Perception. In
Robotics: Science and Systems (RSS), Corvalis, Ore-
gon, USA.
Jordt, A., K
¨
oser, K., and Koch, R. (2016). Refractive 3d
reconstruction on underwater images. Methods in
Oceanography, 15-16:90–113. Computer Vision in
Oceanography.
Kaandorp, J. A. (1993). 2d and 3d modelling of ma-
rine sessile organisms. In Crilly, A. J., Earnshaw,
R. A., and Jones, H., editors, Applications of Fractals
and Chaos, pages 41–61, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Kai, Z., Gernot, R., Noah, S., and Vladlen, K. (2020).
Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492.
Kazhdan, M., Bolitho, M., and Hoppe, H. (2006a). Poisson
surface reconstruction. In Proceedings of the Fourth
Eurographics Symposium on Geometry Processing,
pages 61–70.
Kazhdan, M., Bolitho, M., and Hoppe, H. (2006b). Poisson
surface reconstruction. In Proceedings of the Fourth
Eurographics Symposium on Geometry Processing,
SGP ’06, page 61–70, Goslar, DEU. Eurographics As-
sociation.
Kazhdan, M. and Hoppe, H. (2013). Screened poisson sur-
face reconstruction. ACM Transactions on Graphics
(ToG), 32(3):1–13.
Ke, J., Wang, Q., Wang, Y., Milanfar, P., and Yang, F.
(2021). Musiq: Multi-scale image quality transformer.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 5148–5157.
Kerbl, B., Kopanas, G., Leimk
¨
uhler, T., and Drettakis, G.
(2023). 3d gaussian splatting for real-time radiance
field rendering. ACM Trans. Graph., 42(4):139–1.
Kopanas, G., Philip, J., Leimk
¨
uhler, T., and Drettakis, G.
(2021). Point-based neural rendering with per-view
optimization. In Computer Graphics Forum, vol-
ume 40, pages 29–43. Wiley Online Library.
Kutulakos, K. N. and Seitz, S. M. (2000). A theory of shape
by space carving. International Journal of Computer
Vision, 38(3):199–218.
Lassner, C. and Zollhofer, M. (2021). Pulsar: Efficient
sphere-based neural rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1440–1449.
Laurentini, A. (1994). The visual hull concept for
silhouette-based image understanding. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
16(2):150–162.
Levy, D., Peleg, A., Pearl, N., Rosenbaum, D., Akkaynak,
D., Korman, S., and Treibitz, T. (2023). Seathru-nerf:
Neural radiance fields in scattering media. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 56–65.
Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., and
Tao, D. (2019). An underwater image enhancement
benchmark dataset and beyond. IEEE Transactions
on Image Processing, 29:4376–4389.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
772