
port various languages and frameworks by integrating
language-specific analysis tools and libraries com-
monly used in the industry.
By incorporating these ideas, the proposed
methodology can evolve into more robust, user-
friendly, and practical support that identifies and miti-
gates vulnerabilities and actively supports developers
in producing secure and resilient software.
ACKNOWLEDGEMENTS
This work was partially supported by the project
RESTART (PE00000001), and the project SER-
ICS (PE00000014) under the NRRP MUR program
funded by the EU - NextGenerationEU.
REFERENCES
Adeniran, T. C., Jimoh, R. G., Abah, E. U., Faruk, N.,
Alozie, E., and Imoize, A. L. (2024). Vulnerability as-
sessment studies of existing knowledge-based authen-
tication systems: A systematic review. Sule Lamido
University Journal of Science & Technology, 8(1):34–
61.
Alkhadra, R., Abuzaid, J., AlShammari, M., and Moham-
mad, N. (2021). Solar winds hack: In-depth analy-
sis and countermeasures. In 2021 12th International
Conference on Computing Communication and Net-
working Technologies (ICCCNT), pages 1–7.
Bilgin, Z., Ersoy, M. A., Soykan, E. U., Tomur, E., C¸ omak,
P., and Karac¸ay, L. (2020). Vulnerability prediction
from source code using machine learning. IEEE Ac-
cess, 8:150672–150684.
Cotroneo, D., Improta, C., Liguori, P., and Natella, R.
(2024). Vulnerabilities in ai code generators: Explor-
ing targeted data poisoning attacks. In Proceedings
of the 32nd IEEE/ACM International Conference on
Program Comprehension, pages 280–292.
Durgapal, H. and Kumar, D. (2024). Software vulnerabili-
ties using artificial intelligence. In 2024 International
Conference on Electrical Electronics and Computing
Technologies (ICEECT), volume 1, pages 1–6. IEEE.
Fatima, A., Khan, T. A., Abdellatif, T. M., Zulfiqar, S., Asif,
M., Safi, W., Hamadi, H. A., and Al-Kassem, A. H.
(2023). Impact and research challenges of penetrat-
ing testing and vulnerability assessment on network
threat. In 2023 International Conference on Busi-
ness Analytics for Technology and Security (ICBATS),
pages 1–8.
Fazelnia, M., Moshtari, S., and Mirakhorli, M. (2024).
Establishing minimum elements for effective vulner-
ability management in ai software. arXiv preprint
arXiv:2411.11317.
Janovsky, A., Jancar, J., Svenda, P., Chmielewski, Ł.,
Michalik, J., and Matyas, V. (2024). sec-certs: Ex-
amining the security certification practice for bet-
ter vulnerability mitigation. Computers & Security,
143:103895.
Jeon, S. and Kim, H. K. (2021). Autovas: An automated
vulnerability analysis system with a deep learning ap-
proach. Comput. Secur., 106:102308.
Nath, P., Mushahary, J. R., Roy, U., Brahma, M., and Singh,
P. K. (2023). Ai and blockchain-based source code
vulnerability detection and prevention system for mul-
tiparty software development. Computers and Electri-
cal Engineering, 106:108607.
Olabim, M., Greenfield, A., and Barlow, A. (2024). A dif-
ferential privacy-based approach for mitigating data
theft in ransomware attacks. Authorea Preprints.
Ozturk, O. S., Ekmekcioglu, E., Cetin, O., Arief, B., and
Hernandez-Castro, J. (2023). New tricks to old codes:
Can ai chatbots replace static code analysis tools? In
Proceedings of the 2023 European Interdisciplinary
Cybersecurity Conference, EICC ’23, page 13–18,
New York, NY, USA. Association for Computing Ma-
chinery.
Pooja, S., Chandrakala, C., and Raju, L. K. (2022). Devel-
oper’s roadmap to design software vulnerability de-
tection model using different ai approaches. IEEE Ac-
cess, 10:75637–75656.
Rajapaksha, S., Senanayake, J., Kalutarage, H., and Al-
Kadri, M. O. (2023). Enhancing security assurance
in software development: Ai-based vulnerable code
detection with static analysis. In European Sympo-
sium on Research in Computer Security, pages 341–
356. Springer.
Seas, C., Fitzpatrick, G., Hamilton, J. A., and Carlisle,
M. C. (2024). Automated vulnerability detection in
source code using deep representation learning. In
2024 IEEE 14th Annual Computing and Communica-
tion Workshop and Conference (CCWC), pages 0484–
0490. IEEE.
Shuvo, A. M., Zhang, T., Farahmandi, F., and Tehra-
nipoor, M. (2024). Flat: Layout-aware and security
property-assisted timing fault-injection attack assess-
ment. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems.
Suneja, S., Zheng, Y., Zhuang, Y., Laredo, J., and Morari,
A. (2020). Learning to map source code to software
vulnerability using code-as-a-graph. arXiv preprint
arXiv:2006.08614.
Waheed, T. and Marchetti, E. (2023). The impact of iot cy-
bersecurity testing in the perspective of industry 5.0.
In International Conference on Web Information Sys-
tems and Technologies.
Wang, P., Liu, S., Liu, A., and Jiang, W. (2024). Detecting
security vulnerabilities with vulnerability nets. Jour-
nal of Systems and Software, 208:111902.
MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering
370