
Kennedy, R. E., Andr
´
efou
¨
et, S., Cohen, W. B., G
´
omez, C.,
Griffiths, P., Hais, M., et al. (2018). Bringing an
ecological view of change to Landsat-based remote
sensing. Frontiers in Ecology and the Environment,
16(6):340–348.
Lim, B., Arık, S.
¨
O., Loeff, N., and Pfister, T. (2021).
Temporal fusion transformers for interpretable multi-
horizon time series forecasting. International Journal
of Forecasting, 37(4):1748–1764.
Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma,
L., and Long, M. (2023). iTransformer: Inverted
Transformers are effective for time series forecasting.
arXiv:2310.06625.
Miller, L., Pelletier, C., and Webb, G. I. (2024). Deep learn-
ing for satellite image time series analysis: A review.
arXiv:2404.03936.
Mo, F., Huang, Y., Wu, M., Zhu, X., and Zhang, C. (2025).
Mmsisp: A satellite image sequence prediction net-
work with multi-factor decoupling and multi-modal
fusion. Pattern Recognition, 221–236.
Moskola
¨
ı, W. R., Abdou, W., Dipanda, A., and Kolyang
(2021). Application of deep learning architectures for
satellite image time series prediction: A review. Re-
mote Sensing, 13(23):4822.
Mozhaeva, S. and Shoshany, M. (2022). Relationships
between vegetation indices and rainfall and PET at
different time-lags: A study at a Mediterranean to
arid gradient. The International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Informa-
tion Sciences, 43:939–944.
Roitberg, E. and Shoshany, M. (2024). Primary productiv-
ity and woody growth: a 35 years Landsat TM NDVI
time series investigation across desert-fringe in the
south-eastern Mediterranean. In Proceedings of the
IEEE International Geoscience and Remote Sensing
Symposium, pages 2867–2870.
Ruiz-Aguilar, J., Turias, I., and Jim
´
enez-Come, M. (2014).
Hybrid approaches based on sarima and artificial neu-
ral networks for inspection time series forecasting.
Transportation Research Part E: Logistics and Trans-
portation Review, 67:1–13.
Rußwurm, M. and K
¨
orner, M. (2018). Self-attention for raw
optical satellite time series classification. Journal of
Photogrammetry and Remote Sensing, 169:421–435.
Sun, X., Wang, P., Lu, W., Zhu, Z., Lu, X., He, Q., Li,
J., Rong, X., Yang, Z., Chang, H., He, Q., Yang, G.,
Wang, R., Lu, J., and Fu, K. (2022). RingMo: A re-
mote sensing foundation model with masked image
modeling. IEEE Transactions on Geoscience and Re-
mote Sensing, 60:1–15.
Taylor, S. J. and Letham, B. (2018). Forecasting at scale.
The American Statistician, 72(1):37–45.
Tseng, G., Cartuyvels, R., Zvonkov, I., Purohit, M., Rol-
nick, D., and Kerner, H. (2023). Lightweight, pre-
trained transformers for remote sensing timeseries.
arXiv:2304.14065.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Keiser, L., and Polosukhin, I.
(2017). Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000–
6010.
Verma, N. K., Bansal, A., and Singh, S. (2013). Gener-
ation of future image frames for an image sequence.
In International Conference on Intelligent Interac-
tive Technologies and Multimedia, pages 154–162.
Springer.
Yan, B., Mu, R., Guo, J., Liu, Y., Tang, J., and Wang, H.
(2022). Flood risk analysis of reservoirs based on full-
series arima model under climate change. Journal of
Hydrology, 610:127979.
Yao, F., Lu, W., Yang, H., Xu, L., Liu, C., Hu, L., Yu, H.,
Liu, N., Deng, C., Tang, D., Chen, C., Yu, J., Sun, X.,
and Fu, K. (2023). RingMo-Sense: Remote sensing
foundation model for spatiotemporal prediction via
spatiotemporal evolution disentangling. IEEE Trans-
actions on Geoscience and Remote Sensing, 61:1–21.
Yuan, Y. and Lin, L. (2020). Self-supervised pretraining of
transformers for satellite image time series classifica-
tion. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 14:474–487.
Zhang, Y. and Yan, J. (2023). Crossformer: Transformer
utilizing cross-dimension dependency for multivari-
ate time series forecasting. In Proceedings of the
Eleventh International Conference on Learning Rep-
resentations.
Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. (2021). Informer: Beyond efficient
transformer for long sequence time-series forecasting.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 11106–11115.
Zhu, Z. (2017). Change detection using landsat time series:
A review of frequencies, preprocessing, algorithms,
and applications. Journal of Photogrammetry and Re-
mote Sensing, 130:370–384.
Zhu, Z., Zhang, J., Yang, Z., Aljaddani, A. H., Cohen,
W. B., Qiu, S., and Zhou, C. (2019). Continuous mon-
itoring of land disturbance based on Landsat time se-
ries. Remote Sensing of Environment, 238:111116.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
552