
Galliani, S., Lasinger, K., and Schindler, K. (2016).
Gipuma: Massively parallel multi-view stereo recon-
struction. Publikationen der Deutschen Gesellschaft
f
¨
ur Photogrammetrie, Fernerkundung und Geoinfor-
mation e. V, 25(361-369):2.
Garbin, S. J., Kowalski, M., Johnson, M., Shotton, J., and
Valentin, J. (2021). Fastnerf: High-fidelity neural ren-
dering at 200fps. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
14346–14355.
Goesele, M., Curless, B., and Seitz, S. M. (2006). Multi-
view stereo revisited. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion (CVPR’06), volume 2, pages 2402–2409. IEEE.
Hartmann, W., Galliani, S., Havlena, M., Van Gool, L., and
Schindler, K. (2017). Learned multi-patch similarity.
In Proceedings of the IEEE international conference
on computer vision, pages 1586–1594.
Inc., R. (2022). Character Creator 4. Version 4.0.
Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., and Aanæs,
H. (2014). Large scale multi-view stereopsis evalua-
tion. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pages 406–413. IEEE.
Jiang, Y., Ji, D., Han, Z., and Zwicker, M. (2020). Sdfd-
iff: Differentiable rendering of signed distance fields
for 3d shape optimization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1251–1261.
Kanazawa, A., Tulsiani, S., Efros, A. A., and Malik, J.
(2018). Learning category-specific mesh reconstruc-
tion from image collections. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 371–386.
Kar, A., H
¨
ane, C., and Malik, J. (2017). Learning a multi-
view stereo machine. Advances in neural information
processing systems, 30.
Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Pois-
son surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry pro-
cessing, volume 7, page 0.
Kellnhofer, P., Jebe, L. C., Jones, A., Spicer, R., Pulli, K.,
and Wetzstein, G. (2021). Neural lumigraph render-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
4287–4297.
Kolmogorov, V. and Zabih, R. (2002). Multi-camera
scene reconstruction via graph cuts. In Computer
Vision—ECCV 2002: 7th European Conference on
Computer Vision Copenhagen, Denmark, May 28–31,
2002 Proceedings, Part III 7, pages 82–96. Springer.
Kutulakos, K. N. and Seitz, S. M. (2000). A theory of shape
by space carving. International journal of computer
vision, 38:199–218.
Liu, S., Li, T., Chen, W., and Li, H. (2019a). Soft rasterizer:
A differentiable renderer for image-based 3d reason-
ing. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7708–7717.
Liu, S., Saito, S., Chen, W., and Li, H. (2019b). Learn-
ing to infer implicit surfaces without 3d supervision.
Advances in Neural Information Processing Systems,
32.
Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., and Cui,
Z. (2020). Dist: Rendering deep implicit signed dis-
tance function with differentiable sphere tracing. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 2019–
2028.
Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:
A high resolution 3d surface construction algorithm.
ACM siggraph computer graphics, 21(4):163–169.
Luo, K., Guan, T., Ju, L., Huang, H., and Luo, Y. (2019).
P-mvsnet: Learning patch-wise matching confidence
aggregation for multi-view stereo. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 10452–10461.
Martin-Brualla, R., Radwan, N., Sajjadi, M. S., Barron,
J. T., Dosovitskiy, A., and Duckworth, D. (2021). Nerf
in the wild: Neural radiance fields for unconstrained
photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 7210–7219.
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
and Geiger, A. (2019). Occupancy networks: Learn-
ing 3d reconstruction in function space. In Proceed-
ings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).
Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. (2021). Nerf: Repre-
senting scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106.
Munkberg, J., Hasselgren, J., Shen, T., Gao, J., Chen, W.,
Evans, A., M
¨
uller, T., and Fidler, S. (2022). Extract-
ing triangular 3d models, materials, and lighting from
images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
8280–8290.
Park, J. J., Florence, P., Straub, J., Newcombe, R., and
Lovegrove, S. (2019). Deepsdf: Learning continu-
ous signed distance functions for shape representa-
tion. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 165–
174.
Pons, J.-P., Keriven, R., and Faugeras, O. (2005). Mod-
elling dynamic scenes by registering multi-view im-
age sequences. In 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR’05), volume 2, pages 822–827. IEEE.
Pumarola, A., Corona, E., Pons-Moll, G., and Moreno-
Noguer, F. (2021). D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 10318–10327.
Reiser, C., Peng, S., Liao, Y., and Geiger, A. (2021). Kilo-
nerf: Speeding up neural radiance fields with thou-
sands of tiny mlps. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
14335–14345.
Riegler, G., Ulusoy, A. O., Bischof, H., and Geiger, A.
(2017). Octnetfusion: Learning depth fusion from
HIš: Sparse-View 3D Object Reconstruction with a Hybrid Implicit Initialization
179