
of data leakage were identified in those studies, and as
a result, they were not considered for comparison of
results. However, we would like to highlight this issue
as a caution for future studies using these datasets.
For future work, we plan to adapt the model for
detecting oral cancer subtypes and incorporate image
segmentation techniques, which could enable more
precise identification of cancer-affected areas, thereby
complementing the clinical diagnosis process. The in-
tegration of this type of model into a clinical decision
support system is also a promising direction, with the
potential to improve the speed and accuracy of diag-
noses in hospital environments.
ACKNOWLEDGEMENTS
This work is financed by National Funds through
the Portuguese funding agency, FCT- Fundac¸
˜
ao
para a Ci
ˆ
encia e a Tecnologia, within project
LA/P/0063/2020. DOI:10.54499/LA/P/0063/2020.
REFERENCES
Aiman, E. (2022). Oral cancer, effcientnet classification,
98.7Accessed: December 14, 2024.
Albalawi, E., Thakur, A., Ramakrishna, M. T., Bhatia Khan,
S., SankaraNarayanan, S., Almarri, B., and Hadi, T. H.
(2024). Oral squamous cell carcinoma detection using
efficientnet on histopathological images. Frontiers in
Medicine, 10:3833.
Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S.,
Sidike, P., Nasrin, M. S., Essen, B. C. V., Awwal, A.
A. S., and Asari, V. K. (2018). The history began from
alexnet: A comprehensive survey on deep learning ap-
proaches. ArXiv, abs/1803.01164.
Ashraf, K. (2024). Histopathologic oral cancer detection.
Accessed: December 14, 2024.
Chakraborty, D., Natarajan, C., and Mukherjee, A. (2019).
Chapter six - advances in oral cancer detection. vol-
ume 91 of Advances in Clinical Chemistry, pages
181–200. Elsevier.
Chollet, F. (2017). Xception: Deep Learning with Depth-
wise Separable Convolutions . In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 1800–1807, Los Alamitos, CA, USA.
IEEE Computer Society.
Das, M., Dash, R., and Mishra, S. K. (2023). Auto-
matic detection of oral squamous cell carcinoma from
histopathological images of oral mucosa using deep
convolutional neural network. International Jour-
nal of Environmental Research and Public Health,
20(3):2131.
Fati, S. M., Senan, E. M., and Javed, Y. (2022). Early
diagnosis of oral squamous cell carcinoma based on
histopathological images using deep and hybrid learn-
ing approaches. Diagnostics, 12(8).
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely Connected Convolutional Net-
works . In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2261–2269,
Los Alamitos, CA, USA. IEEE Computer Society.
Kebede, A. F. (2021). Histopathologic oral cancer detection
using cnns. Accessed: Jannuary 6, 2024.
Koonce, B. (2021). EfficientNet, pages 109–123. Apress,
Berkeley, CA.
Nagarajan, B., Chakravarthy, S., Venkatesan, V. K., Ra-
makrishna, M. T., Khan, S. B., Basheer, S., and Al-
balawi, E. (2023). A deep learning framework with an
intermediate layer using the swarm intelligence opti-
mizer for diagnosing oral squamous cell carcinoma.
Diagnostics, 13(22).
Rahman, A., Alqahtani, A., Aldhafferi, N., Nasir, M. U.,
Khan, M. F., Khan, M. A., and Mosavi, A. (2022).
Histopathologic oral cancer prediction using oral
squamous cell carcinoma biopsy empowered with
transfer learning. Sensors, 22(10).
Rahman, T. Y., Mahanta, L. B., Das, A. K., and Sarma,
J. D. (2020). Histopathological imaging database for
oral cancer analysis. Data in Brief, 29:105114.
Sharma, S. K. D. (2024). Oral squamous cell detection us-
ing deep learning.
Shavlokhova, V., Sandhu, S., Flechtenmacher, C., Kove-
shazi, I., Neumeier, F., Padr
´
on-Laso, V., Jonke,
ˇ
Z.,
Saravi, B., Vollmer, M., Vollmer, A., Hoffmann, J.,
Engel, M., Ristow, O., and Freudlsperger, C. (2021).
Deep learning on oral squamous cell carcinoma ex
vivo fluorescent confocal microscopy data: A feasi-
bility study. Journal of Clinical Medicine, 10(22).
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In Bengio, Y. and LeCun, Y., editors, 3rd Interna-
tional Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings.
Soni, A., Sethy, P., Dewangan, A., Nanthaamornphong, A.,
Behera, S. K., and Devi, B. (2024). Enhancing oral
squamous cell carcinoma detection: a novel approach
using improved efficientnet architecture. BMC Oral
Health 24, 24:601.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2015). Rethinking the inception architecture for
computer vision. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2818–
2826.
Torres, J., Oliveira, J., and Gomes, E. (2022). The us-
age of data augmentation strategies on the detection
of murmur waves in a pcgsignal. In Proceedings of
the 15th International Joint Conference on Biomed-
ical Engineering Systems and Technologies, volume
4:BIOSIGNALS, pages 128–132.
Histopathological Imaging Dataset for Oral Cancer Analysis: A Study with a Data Leakage Warning
817