
ao Huang, Z., Sang, Y., Sun, Y., and Lv, J. (2022). A neu-
ral network learning algorithm for highly imbalanced
data classification. Information Sciences, 612:496–
513. https://doi.org/10.1016/j.ins.2022.08.074.
Bai, Y., Yang, E., Han, B., Yang, Y., Li, J., Mao, Y., Niu,
G., and Liu, T. (2021). Understanding and improving
early stopping for learning with noisy labels.
Choi, S., Cho, S. I., Jung, W., Lee, T., Choi, S. J., and
et al. (2023). Deep learning model improves tumor-
infiltrating lymphocyte evaluation and therapeutic re-
sponse prediction in breast cancer. npj Breast Cancer.
https://doi.org/10.1038/s41523-023-00577-4.
Cordeiro, C. Q. (2019). An Automatic Patch-Based Ap-
proach for HER-2 Scoring in Immunohistochemical
Breast Cancer Images. https://acervodigital.ufpr.br/
handle/1884/66131.
Cordeiro, C. Q., Ioshii, S. O., Alves, J. H., and de Oliveira,
L. F. (2018). An Automatic Patch-based Approach
for HER-2 Scoring in Immunohistochemical Breast
Cancer Images Using Color Features. XVIII Simp
´
osio
Brasileiro de Computac¸
˜
ao Aplicada
`
a Sa
´
ude. https:
//doi.org/10.5753/sbcas.2018.3685.
Cortes, C. and Vapnik, V. (1995). Support-vector net-
works. Machine Learning, 20. https://doi.org/10.
1007/BF00994018. Acessado em: 27/03/2023.
Cubuk, E. D., Zoph, B., Man
´
e, D., Vasudevan, V., and Le,
Q. V. (2019). Autoaugment: Learning augmentation
strategies from data. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2021). An image is worth 16x16 words: Trans-
formers for image recognition at scale.
Han, Z., Wei, B., Zheng, Y., Yin, Y., Li, K., and
Li, S. (2017). Breast Cancer Multi-classification
from Histopathological Images with Structured Deep
Learning Model. Scientific Reports. https://doi.org/
10.1038/s41598-017-04075-z.
Huang, G., Liu, Z., Maaten, L. V. D., and Weinberger, K. Q.
(2017). Densely connected convolutional networks.
In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2261–2269, Los
Alamitos, CA, USA. IEEE Computer Society.
IARC (2023). Cancer Today. https://gco.iarc.fr/today/
online-analysis-multi-bars?
Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J.,
and Aila, T. (2020). Training Generative Adversar-
ial Networks with Limited Data. https://doi.org/10.
48550/arXiv.2006.06676. Acessado em: 24/04/2023.
Kim, S.-W., Roh, J., and Park, C.-S. (2016). Immuno-
histochemistry for Pathologists: Protocols, Pitfalls,
and Tips. Journal of Pathology and Translational
Medicine 2016; 50: 411-418. https://doi.org/10.4132/
jptm.2016.08.08.
Krinski, B. A., Ruiz, D. V., Laroca, R., and Todt, E. (2023).
DACov: a deeper analysis of data augmentation on the
computed tomography segmentation problem. Com-
puter Methods in Biomechanics and Biomedical En-
gineering: Imaging & Visualization, 0(0):1–18. https:
//doi.org/10.1080/21681163.2023.2183807.
Laurinavicius, A., Plancoulaine, B., Herlin, P., and Lauri-
naviciene, A. (2016). Comprehensive Immunohisto-
chemistry: Digital, Analytical and Integrated. Patho-
biology 2016;83:156-163. https://doi.org/10.1159/
000442389.
Maleki, F., Muthukrishnan, N., Ovens, K., Md, C., and
Forghani, R. (2020). Machine Learning Algorithm
Validation. Neuroimaging Clinics of North America,
30:433–445. http://dx.doi.org/10.1016/j.nic.2020.08.
004. Acessado em: 25/04/2023.
Mouelhi, A., Rmili, H., Ali, J. B., Sayadi, M., Doghri,
R., and Mrad, K. (2018). Fast unsupervised nuclear
segmentation and classification scheme for automatic
allred cancer scoring in immunohistochemical breast
tissue images. Computer Methods and Programs in
Biomedicine. https://doi.org/10.1016/j.cmpb.2018.08.
005.
Mridha, M. F., Morol, M. K., Ali, M. A., and Shovon,
M. S. H. (2022). convoHER2: A Deep Neural Net-
work for Multi-Stage Classification of HER2 Breast
Cancer. AIUB Journal of Science and Engineering
(AJSE). https://doi.org/10.53799/ajse.v22i1.477.
Mukherkjee, D., Saha, P., Kaplun, D., Sinitca, A., and
Sarkar, R. (2022). Brain tumor image generation us-
ing an aggregation of GAN models with style trans-
fer. Sci Rep. 2022; 12: 9141. https://doi.org/10.1038\
%2Fs41598-022-12646-y.
Osuala, R., Kushibar, K., Garrucho, L., Linardos, A.,
Szafranowska, Z., Klein, S., Glocker, B., Diaz, O.,
and Lekadir, K. (2023). Data synthesis and adver-
sarial networks: A review and meta-analysis in can-
cer imaging. Medical Image Analysis, 84:102704.
https://doi.org/10.1016/j.media.2022.102704.
Rmili, H., Mouelhi, A., Solaiman, B., Doghri, R., and
Labidi, S. (2022). A novel pre-processing approach
based on colour space assessment for digestive neu-
roendocrine tumour grading in immunohistochemi-
cal tissue images. Pol J Pathol. 2022;73(2):134-158.
https://doi.org/10.5114/pjp.2022.119841.
Rogalsky, J. E. (2021). Semi-automatic ER and PR scoring
in immunohistochemistry H-BAD breast cancer im-
ages. https://acervodigital.ufpr.br/handle/1884/73470.
Rogalsky, J. E., Ioshii, S. O., and de Oliveira, L. F. (2021).
Automatic ER and PR scoring in Immunohistochem-
istry H-DAB Breast Cancer images. XXI Simp
´
osio
Brasileiro de Computac¸
˜
ao Aplicada
`
a Sa
´
ude. https:
//doi.org/10.5753/sbcas.2021.16075.
Tang, Z., Chuang, K. V., DeCarli, C., Jin, L.-W., Beckett,
L., Keiser, M. J., and Dugger, B. N. (2019). Inter-
pretable classification of Alzheimer’s disease patholo-
gies with a convolutional neural network pipeline.
Nature Communications 10. https://doi.org/10.1038/
s41467-019-10212-1.
WHO (2022). Cancer. https://www.who.int/news-room/
fact-sheets/detail/cancer.
Yip, C.-H. and Rhodes, A. (2014). Estrogen and pro-
gesterone receptors in breast cancer. Future Oncol-
ogy, 10(14), 2293-2301. https://doi.org/10.2217/fon.
14.110.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
846