
REFERENCES
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
(2019). Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.
Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
(2020). What is the state of neural network pruning?
In Dhillon, I., Papailiopoulos, D., and Sze, V., editors,
Proceedings of Machine Learning and Systems, vol-
ume 2, pages 129–146.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. (2020). An image
is worth 16x16 words: Transformers for image recog-
nition at scale. ICLR 2021 · The Ninth International
Conference on Learning Representations.
Englebert, A., Stassin, S., Nanfack, G., Mahmoudi, S. A.,
Siebert, X., Cornu, O., and De Vleeschouwer, C.
(2023). Explaining through transformer input sam-
pling. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) Workshops,
pages 806–815.
Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). Knowl-
edge distillation: A survey. International Journal of
Computer Vision, 129(6):1789–1819.
Govil, K., Welch, M. L., Ball, J. T., and Pennypacker, C. R.
(2020). Preliminary results from a wildfire detection
system using deep learning on remote camera images.
Remote Sensing, 12(1).
Hamzah, S. A., Dalimin, M. N., Som, M. M., Zainal, M. S.,
Khairun, Ramli, N., Utomo, W. M., and Yusoff, N. A.
(2022). High accuracy sensor nodes for a peat swamp
forest fire detection using esp32 camera.
Khan, S. and Khan, A. (2022). Ffirenet: Deep learning
based forest fire classification and detection in smart
cities. Symmetry, 14(10).
Lagunas, F., Charlaix, E., Sanh, V., and Rush, A. M. (2021).
Block pruning for faster transformers. Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 10619–10629.
Lerat, J.-S. and Mahmoudi, S. A. (2024). Scalable deep
learning for industry 4.0: Speedup with distributed
deep learning and environmental sustainability con-
siderations. In Artificial Intelligence and High Per-
formance Computing in the Cloud, pages 182–204,
Cham. Springer Nature Switzerland.
Lerat, J.-S., Mahmoudi, S. A., and Mahmoudi, S. (2023).
Single node deep learning frameworks: Comparative
study and cpu/gpu performance analysis. Concur-
rency and Computation: Practice and Experience,
35(14):e6730.
Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. (2022). A convnet for the 2020s. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 11976–11986.
Madeira, E. M. (2023). The crucial role of forests in com-
bating climate change. Trends in Biotechnology and
Plant Sciences.
Mahmoudi, S. A., Stassin, S., Daho, M. E. H., Lessage, X.,
and Mahmoudi, S. (2022). Explainable Deep Learn-
ing for Covid-19 Detection Using Chest X-ray and CT-
Scan Images, pages 311–336. Springer International
Publishing, Cham.
Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y.,
Van Baalen, M., and Blankevoort, T. (2021). A white
paper on neural network quantization. arXiv preprint
arXiv:2106.08295.
Park, M., Tran, D. Q., Lee, S., and Park, S. (2021). Mul-
tilabel image classification with deep transfer learn-
ing for decision support on wildfire response. Remote
Sensing, 13(19).
Petsiuk, V., Das, A., and Saenko, K. (2018). Rise: Ran-
domized input sampling for explanation of black-box
models. In BMC.
Pruthi, D., Gupta, M., Dhingra, B., Neubig, G., and Lipton,
Z. C. (2020). Learning to deceive with attention-based
explanations. Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2020). Grad-cam: visual
explanations from deep networks via gradient-based
localization. International journal of computer vision,
128:336–359.
Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Ful
´
e,
P. Z., and Blasch, E. (2021). Aerial imagery pile
burn detection using deep learning: The flame dataset.
Computer Networks, 193:108001.
Shi, B., Wu, Z., Mao, M., Wang, X., and Darrell, T. (2025).
When do we not need larger vision models? In Euro-
pean Conference on Computer Vision, pages 444–462.
Springer.
Simonyan, K., Vedaldi, A., and Zisserman, A. (2014).
Deep inside convolutional networks: Visualising im-
age classification models and saliency maps. ICLR
2014 · International Conference on Learning Repre-
sentations. Workshop Poster.
Sousa, M. J., Moutinho, A., and Almeida, M. (2020).
Wildfire detection using transfer learning on aug-
mented datasets. Expert Systems with Applications,
142:112975.
Stassin, S., Corduant, V., Mahmoudi, S. A., and Siebert, X.
(2024). Explainability and evaluation of vision trans-
formers: An in-depth experimental study. Electronics,
13(1).
Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S.,
Mardziel, P., and Hu, X. (2020). Score-cam: Score-
weighted visual explanations for convolutional neural
networks. In CVPR Worshop on TCV.
Wu, H., Li, H., Shamsoshoara, A., Razi, A., and Afghah,
F. (2020). Transfer learning for wildfire identification
in uav imagery. In 2020 54th Annual Conference on
Information Sciences and Systems (CISS), pages 1–6.
Zeiler, M. D. and Fergus, R. (2014). Visualizing and under-
standing convolutional networks. In European confer-
ence on computer vision, pages 818–833. Springer.
Zhao, Y., Ma, J., Li, X., and Zhang, J. (2018). Saliency de-
tection and deep learning-based wildfire identification
in uav imagery. Sensors, 18(3).
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
854