
Hassibi, B. and Stork, D. (1992). Second order derivatives
for network pruning: Optimal brain surgeon. In Han-
son, S., Cowan, J., and Giles, C., editors, Advances
in Neural Information Processing Systems, volume 5.
Morgan-Kaufmann.
He, J. and Xu, J. (2019). MgNet: A unified framework of
multigrid and convolutional neural network. Science
China Mathematics, 62(7):1331–1354.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving
Deep into Rectifiers: Surpassing Human-Level Per-
formance on ImageNet Classification. In 2015 IEEE
International Conference on Computer Vision (ICCV),
pages 1026–1034, Santiago, Chile. IEEE.
He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep
Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778. ISSN: 1063-
6919.
He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity
mappings in deep residual networks. In Leibe, B.,
Matas, J., Sebe, N., and Welling, M., editors, Com-
puter Vision – ECCV 2016, pages 630–645, Cham.
Springer International Publishing.
Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L.-
C., Tan, M., Chu, G., Vasudevan, V., Zhu, Y., Pang,
R., Adam, H., and Le, Q. (2019). Searching for Mo-
bileNetV3. In 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 1314–1324,
Seoul, Korea (South). IEEE.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam, H.
(2017). MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. ArXiv.
Kahl, K. (2009). Adaptive Algebraic Multigrid for Lattice
QCD Computations. PhD thesis, Wuppertal U.
Katrutsa, A., Daulbaev, T., and Oseledets, I. (2017). Deep
multigrid: learning prolongation and restriction matri-
ces. arXiv: Numerical Analysis.
Ke, T.-W., Maire, M., and Yu, S. X. (2017). Multigrid neu-
ral architectures. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
4067–4075.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
ageNet Classification with Deep Convolutional Neu-
ral Networks. In Advances in Neural Information Pro-
cessing Systems, volume 25. Curran Associates, Inc.
Lee, N., Ajanthan, T., and Torr, P. (2019). SNIP: SINGLE-
SHOT NETWORK PRUNING BASED ON CON-
NECTION SENSITIVITY. In International Confer-
ence on Learning Representations.
Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
(2017). Pruning filters for efficient convnets. In Inter-
national Conference on Learning Representations.
Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. (2022). A convnet for the 2020s. In 2022
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 11966–11976.
Loshchilov, I. and Hutter, F. (2017). SGDR: Stochastic Gra-
dient Descent with Warm Restarts. arXiv:1608.03983
[cs, math].
Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz,
J. (2016). Pruning convolutional neural networks for
resource efficient transfer learning.
Oh, S.-K., Pedrycz, W., and Park, B.-J. (2003). Polynomial
neural networks architecture: analysis and design.
Computers & Electrical Engineering, 29(6):703–725.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
PyTorch: An Imperative Style, High-Performance
Deep Learning Library. 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019).
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., Berg, A. C., and Fei-Fei, L. (2015). Ima-
geNet Large Scale Visual Recognition Challenge. In-
ternational Journal of Computer Vision, 115(3):211–
252.
Saad, Y. (2003). Iterative Methods for Sparse Linear Sys-
tems. Society for Industrial and Applied Mathematics,
second edition.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). MobileNetV2: Inverted Residu-
als and Linear Bottlenecks . In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 4510–4520, Los Alamitos, CA, USA.
IEEE Computer Society.
Shalev-Shwartz, S. and Ben-David, S. (2014). Understand-
ing machine learning: from theory to algorithms.
Cambridge University Press, New York, NY, USA.
Shin, Y. and Ghosh, J. (1991). The pi-sigma network: an
efficient higher-order neural network for pattern clas-
sification and function approximation. In IJCNN-91-
Seattle International Joint Conference on Neural Net-
works, volume i, pages 13–18 vol.1.
Tomasi, C. and Krause, R. (2021). Construction of grid
operators for multilevel solvers: a neural network ap-
proach. arXiv preprint arXiv:2109.05873.
Treister, E. and Yavneh, I. (2011). On-the-Fly Adaptive
Smoothed Aggregation Multigrid for Markov Chains.
SIAM J. Scientific Computing, 33:2927–2949.
Trottenberg, U., Oosterlee, C. W., and Sch
¨
uller, A. (2001).
Multigrid. Academic Press, San Diego.
van Betteray, A., Rottmann, M., and Kahl, K. (2023).
Mgiad: Multigrid in all dimensions. efficiency and ro-
bustness by weight sharing and coarsening in resolu-
tion and channel dimensions. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion (ICCV) Workshops, pages 1292–1301.
Xie, S., Girshick, R., Dollar, P., Tu, Z., and He, K. (2017).
Aggregated Residual Transformations for Deep Neu-
ral Networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5987–
5995, Honolulu, HI. IEEE.
Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). Shuf-
fleNet: An Extremely Efficient Convolutional Neu-
ral Network for Mobile Devices. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 6848–6856. ISSN: 2575-7075.
Poly-MgNet: Polynomial Building Blocks in Multigrid-Inspired ResNets
191