
English handwritten images based on graph models and
ambiguous zone analysis. Expert Systems with
Applications, 64, 352–364.
https://doi.org/10.1016/j.eswa.2016.08.004
Elbaati, A., Hamdi, Y., & Alimi, A. M. (2019).
Handwriting recognition based on temporal order
restored by the end-to-end system. In 2019
International Conference on Document Analysis and
Recognition (ICDAR) (pp. 1231–1236). IEEE.
https://doi.org/10.1109/ICDAR.2019.00199
Elbaati, A., Kherallah, M., Ennaji, A., & Alimi, A. M.
(2009). Temporal order recovery of the scanned
handwriting. In 2009 10th International Conference on
Document Analysis and Recognition (pp. 1116–1120).
IEEE. https://doi.org/10.1109/ICDAR.2009.232
Gautam, K., & Singh, S. (2022). Neural Network to
Recognize Handwriting Objects.
Jin, Y., Ran, T., Yuan, L., Lv, K., Wang, G., & Xiao, W.
(2024). Bagging no modelo semi-Markov oculto para
geração de trajetória de robô de escrita manual. J. Intell.
Fuzzy Syst., 46, 6325-6335.
https://doi.org/10.3233/jifs-237275
KumarBhunia, A., Bhowmick, A., Bhunia, A. K., Konwer,
A., Banerjee, P., Roy, P. P., & Pal, U. (2018).
Handwriting trajectory recovery using end-to-end deep
encoder-decoder network. In 2018 24th International
Conference on Pattern Recognition (ICPR) (pp. 3639–
3644). IEEE.
https://doi.org/10.1109/ICPR.2018.8545898
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep
learning. Nature, 521(7553), 436–444.
https://doi.org/10.1038/nature14539
Nagoya, T., & Fujioka, H. (2011). A graph theoretic
algorithm for recovering drawing order of multi-stroke
handwritten images. In 2011 Third International
Conference on Intelligent Networking and
Collaborative Systems (pp. 569–574). IEEE.
https://doi.org/10.1109/INCoS.2011.144
Nguyen, V., & Blumenstein, M. (2010). Techniques for
static handwriting trajectory recovery: A survey. In
Proceedings of the 9th IAPR International Workshop
on Document Analysis Systems (pp. 463–470). ACM.
https://doi.org/10.1145/1815330.1815382
Noubigh, Z., & Kherallah, M. (2017). A survey on
handwriting recognition based on the trajectory
recovery technique. In 2017 1st International Workshop
on Arabic Script Analysis and Recognition (ASAR)
(pp. 69–73). IEEE.
https://doi.org/10.1109/ASAR.2017.8067766
Plamondon, R., & Srihari, S. N. (2000). Online and off-
line handwriting recognition: A comprehensive survey.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(1), 63–84.
https://doi.org/10.1109/34.824821
Rousseau, L., Anquetil, E., & Camillerapp, J. (2005).
Recovery of a drawing order from off-line isolated
letters dedicated to on-line recognition. In Eighth
International Conference on Document Analysis and
Recognition (ICDAR’05) (pp. 1121–1125). IEEE.
https://doi.org/10.1109/ICDAR.2005.123
Sharma, A. (2013). Recovery of drawing order in
handwritten digit images. In 2013 IEEE Second
International Conference on Image Information
Processing (ICIIP-2013) (pp. 437–441). IEEE.
https://doi.org/10.1109/ICIIP.2013.6707642
Sharma, A. (2015). A combined static and dynamic
feature extraction technique to recognize handwritten
digits. Vietnam Journal of Computer Science, 2(3),
133–142. https://doi.org/10.1007/s40595-015-0041-3
Sharma, N., & Agarwal, P. (2018). Offline handwriting
recognition using neural networks.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. Journal of
Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-
0197-0
Viard-Gaudin, C., Lallican, P. M., Knerr, S., & Binter, P.
(1999). The ireste on/off (ironoff) dual handwriting
database. In Proceedings of the International
Conference on Document Analysis and Recognition
(pp. 455–458).
https://doi.org/10.1109/ICDAR.1999.791781
Wang, Y., Sonogashira, M., Hashimoto, A., & Iiyama, M.
(2019). Two-stage fully convolutional networks for
stroke recovery of handwritten Chinese character. In
Asian Conference on Pattern Recognition (pp. 321–
334). Springer. https://doi.org/10.1007/978-3-030-
04793-4_26
Xiong, Y., Dai, Y., & Meng, D. (2023). Deep Frame-Point
Sequence Consistent Network for Handwriting
Trajectory Recovery. 2023 IEEE 29th International
Conference on Parallel and Distributed Systems
(ICPADS), 2151-2158.
https://doi.org/10.1109/ICPADS60453.2023.00291
Zhang, X.-Y., Bengio, Y., & Liu, C.-L. (2017). Online and
offline handwritten Chinese character recognition: A
comprehensive study and new benchmark. Pattern
Recognition, 61, 348–360.
https://doi.org/10.1016/j.patcog.2016.07.004
Zhao, B., Yang, M., & Tao, J. (2019). Drawing order
recovery for handwriting Chinese characters. In
ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP)
(pp. 3227–3231). IEEE.
https://doi.org/10.1109/ICASSP.2019.8682696
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
862