
Figure 3: Attention Heatmaps Generated by the ResA-Net Model.
REFERENCES
Dennis, S. J., Thomas, M. A., Williams, D. B., and Robins,
J. C. (2006). Embryo morphology score on day 3 is
predictive of implantation and live birth rates. Journal
of assisted reproduction and genetics, 23(4).
Filho, E., Noble, J., Poli, M., Griffiths, T., Emerson, G., and
Wells, D. (2012). A method for semi-automatic grad-
ing of human blastocyst microscope images. Human
reproduction (Oxford, England), 27:2641–2648.
Gardner, D. K. and Schoolcraft, W. B. (1999). Culture and
transfer of human blastocysts. Current Opinion in Ob-
stetrics and Gynaecology, 11(3):307–311.
Goodman, L. R., Goldberg, J., Falcone, T., Austin, C., and
Desai, N. (2016). Does the addition of time-lapse
morphokinetics in the selection of embryos for trans-
fer improve pregnancy rates? a randomized controlled
trial. Journal of Fertility and Sterility, 105(2).
Gu, R., Wang, G., Song, T., Huang, R., Aertsen, M., De-
prest, J., Ourselin, S., Vercauteren, T., and Zhang, S.
(2020). Ca-net: Comprehensive attention convolu-
tional neural networks for explainable medical image
segmentation. IEEE transactions on medical imaging,
40(2):699–711.
Gunashekar, D. D., Bielak, L., H
¨
agele, L., Oerther, B.,
Benndorf, M., Grosu, A., Brox, T., Zamboglou, C.,
and Bock, M. (2022). Explainable ai for cnn-based
prostate tumor segmentation in multi parametric mri
correlated to whole mount histopathology. Radiation
Oncology, 17(1):65.
Ishaq, M., Raza, S., Rehar, H., Abadeen, S., Hussain, D.,
Naqvi, R., and Lee, S. W. (2023). Assisting the human
embryo viability assessment by deep learning for in
vitro fertilization. Mathematics, 11(9):2023.
Kovacs, P. (2016). Time-lapse embryoscopy: Do we have
an efficacious algorithm for embryo selection? Jour-
nal of Reproductive Biotechnology and Fertility, 5.
Kuhnt, A. K. and Passet-Wittig, J. (2022). Families formed
through assisted reproductive technology: Causes, ex-
periences, and consequences in an international con-
text. In Reprod Biomed Soc Online, number 14, pages
289–296.
Muhammad, A., Adnan, H., Woon, C. S., Hwan, K. Y.,
and Ryoung, P. K. (2022). Human blastocyst com-
ponents detection using multiscale aggregation se-
mantic segmentation network for embryonic analysis.
Biomedicines, 10(7):1717.
Mushtaq, A., Mumtaz, M., Raza, A., Salem, N., and Yasir,
M. N. (2022). Artificial intelligence-based detection
of human embryo components for assisted reproduc-
tion by in vitro fertilization. Sensors, 22(19):7418.
Rad, R. M., Saeedi, P., Au, J., and Havelock, J. (2019).
Blast-net: Semantic segmentation of human blasto-
cyst components via cascaded atrous pyramid and
dense progressive upsampling. In IEEE International
Conference on Image Processing (ICIP), pages 1865–
1869.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241.
Springer.
Sacha, M., Rymarczyk, D., Struski, L., Tabor, J., and
Zieli
´
nski, B. (2023). Protoseg: Interpretable semantic
segmentation with prototypical parts. In Proceedings
of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 1481–1492.
Saeedi, P., Yee, D., Au, J., and Havelock, J. (2017). Auto-
matic identification of human blastocyst components
via texture. IEEE Transactions on Biomedical Engi-
neering, 64(12):2968–2978.
Saranya, A. and Subhashini, R. (2023). A systematic re-
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
878