
REFERENCES
Albrecht, S. V., Christianos, F., and Sch
¨
afer, L. (2024).
Multi-Agent Reinforcement Learning: Foundations
and Modern Approaches. MIT Press.
Artaud, C., De-Silva, V., Pina, R., and Shi, X. (2024). Gen-
erating neural architectures from parameter spaces for
multi-agent reinforcement learning. Pattern Recogni-
tion Letters, 185:272–278.
Bahrpeyma, F. and Reichelt, D. (2022). A review of
the applications of multi-agent reinforcement learn-
ing in smart factories. Frontiers in Robotics and AI,
9:1027340.
Das, A., Gervet, T., Romoff, J., Batra, D., Parikh, D., Rab-
bat, M., and Pineau, J. (2019). Tarmac: Targeted
multi-agent communication. In International Confer-
ence on machine learning, pages 1538–1546. PMLR.
Drew, D. S. (2021). Multi-agent systems for search and
rescue applications. Current Robotics Reports, 2:189–
200.
Fung, H. L., Darvariu, V.-A., Hailes, S., and Musolesi,
M. (2022). Trust-based consensus in multi-agent
reinforcement learning systems. arXiv preprint
arXiv:2205.12880.
Khalili, M., Zhang, X., Polycarpou, M. M., Parisini, T.,
and Cao, Y. (2018). Distributed adaptive fault-tolerant
control of uncertain multi-agent systems. Automatica,
87:142–151.
Koul, A. (2019). ma-gym: Collection of multi-agent envi-
ronments based on openai gym.
Kumar, S. and Cohen, P. R. (2000). Towards a fault-tolerant
multi-agent system architecture. In Proceedings of
the fourth international conference on Autonomous
agents, pages 459–466.
Liu, Z., Wan, L., sui, X., Sun, K., and Lan, X. (2021).
Multi-Agent Intention Sharing via Leader-Follower
Forest. Technical Report arXiv:2112.01078, arXiv.
arXiv:2112.01078 [cs] type: article.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., Hassabis, D., and Sadik, A.
(2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533.
Noukhovitch, M., LaCroix, T., Lazaridou, A., and
Courville, A. (2021). Emergent Communication un-
der Competition. arXiv:2101.10276 [cs]. arXiv:
2101.10276.
Oliehoek A., F. and Amato, C. (2016). A Concise Introduc-
tion to Decentralized POMDPs. Springer Publishing
Company, Incorporated, 1st edition.
Papoudakis, G., Christianos, F., Sch
¨
afer, L., and Albrecht,
S. V. (2020). Benchmarking multi-agent deep rein-
forcement learning algorithms in cooperative tasks.
arXiv preprint arXiv:2006.07869.
Pina, R., De Silva, V., and Artaud, C. (2023). Discover-
ing causality for efficient cooperation in multi-agent
environments. arXiv preprint arXiv:2306.11846.
Pina, R., De Silva, V., and Artaud, C. (2024). Towards self-
adaptive resilient swarms using multi-agent reinforce-
ment learning. In ICPRAM, pages 410–417.
Ramezani, M., Amiri Atashgah, M. A., and Rezaee,
A. (2024). A fault-tolerant multi-agent reinforce-
ment learning framework for unmanned aerial vehi-
cles–unmanned ground vehicle coverage path plan-
ning. Drones, 8(10).
Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Fo-
erster, J., and Whiteson, S. (2018). QMIX: Monotonic
Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning. In Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80, pages 4295–4304. arXiv: 1803.11485.
Skobelev, P. (2011). Multi-agent systems for real time re-
source allocation, scheduling, optimization and con-
trolling: Industrial applications. In Ma
ˇ
r
´
ık, V., Vrba,
P., and Leit
˜
ao, P., editors, Holonic and Multi-Agent
Systems for Manufacturing, pages 1–14, Berlin, Hei-
delberg. Springer Berlin Heidelberg.
Son, K., Kim, D., Kang, W. J., Hostallero, D., and Yi, Y.
(2019). QTRAN: Learning to Factorize with Transfor-
mation for Cooperative Multi-Agent Reinforcement
learning. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pages
5887–5896.
Sukhbaatar, S., szlam, a., and Fergus, R. (2016). Learning
Multiagent Communication with Backpropagation. In
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon,
I., and Garnett, R., editors, Proceedings of the 30th
International Conference on Neural Information Pro-
cessing Systems, pages 2252–2260.
Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M.,
Zambaldi, V., Jaderberg, M., Lanctot, M., Son-
nerat, N., Leibo, J. Z., Tuyls, K., and Graepel, T.
(2018). Value-Decomposition Networks For Coopera-
tive Multi-Agent Learning. In Proceedings of the 17th
International Conference on Autonomous Agents and
MultiAgent Systems, pages 2085– 2087, Stockholm,
Sweden,.
Terry, J. K., Grammel, N., Son, S., Black, B., and Agrawal,
A. (2020). Revisiting parameter sharing in multi-
agent deep reinforcement learning. arXiv preprint
arXiv:2005.13625.
Tong, C., Harwood, A., Rodriguez, M. A., and Sinnott,
R. O. (2023). An energy-aware and fault-tolerant
deep reinforcement learning based approach for multi-
agent patrolling problems.
Watkins, C. and Dayan, P. (1992). Technical Note Q,-
Learning. In Machine Learning, volume 8, pages
279–292.
Zhang, K., Yang, Z., Liu, H., Zhang, T., and
Bas¸ar, T. (2018). Fully Decentralized Multi-
Agent Reinforcement Learning with Networked
Agents. arXiv:1802.08757 [cs, math, stat]. arXiv:
1802.08757.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
452