
This imbalance in the dataset highlights an impor-
tant limitation: the data used in this study is not ba-
lanced with the non-Pinus spp. class being dispro-
portionately represented. As a result, the models tend
to achieve higher precision and accuracy by correctly
identifying the dominant class, even if their perfor-
mance on the minority class (Pinus spp.) remains less
robust.
That limitation is particularly reflected in the Jac-
card metrics, which provide a more nuanced evalua-
tion of model performance by considering both false
positives and false negatives. Among the models,
only U-Net achieved a superior result in this me-
tric, underscoring its effectiveness in identifying areas
dominated by Pinus spp. despite the dataset’s imba-
lance.
The dataset used in this project is publicly avai-
lable for use, making it a valuable resource for re-
searchers interested in advancing methodologies for
the classification and monitoring of exotic tree species
in similar contexts. For now, the preliminary results
are promising, and in the future, new approaches will
be explored to improve the results.
ACKNOWLEDGMENT
The authors gratefully acknowledge the support provided
by:
REFERENCES
Aparecido de Almeida, C., Nigri Happ, P., Ortega Adarme,
M., Queiroz Feitoza, R., and Rodrigues Gomes, A.
(2020). Avaliac¸
˜
ao de t
´
ecnicas de aprendizagem pro-
funda para detecc¸
˜
ao de desmatamentos na regi
˜
ao da
amaz
ˆ
onia e cerrados brasileiros. Remote Sensing,
12(6):1024–1038.
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2015).
Segnet: A deep convolutional encoder-decoder archi-
tecture for image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39:2481–
2495. Available at: https://api.semanticscholar.org/
CorpusID:60814714. Accessed on: September 17,
2024.
Beloiu, M., Gessler, A., Griess, V. C., Heinzmann, L., and
Rehush, N. (2023). Individual tree-crown detection
and species identification in heterogeneous forests us-
ing aerial rgb imagery and deep learning. Remote
Sensing, 15(5):1463. Available at: https://doi.org/10.
3390/rs15051463. Accessed on: September 23, 2024.
Brandt, J. and Stolle, F. (2020). A global method to identify
trees outside of closed-canopy forests with medium-
resolution satellite imagery. International Journal
of Remote Sensing, 42(5):1713–1737. Available at:
https://doi.org/10.1080/01431161.2020.1841324. Ac-
cessed on: September 23, 2024.
Cervi, A. C., Linsingen, L. v., Hatschbach, G., and
Ribas, O. S. (2007). A vegetac¸
˜
ao do parque es-
tadual de vila velha, munic
´
ıpio de ponta grossa,
paran
´
a, brasil. Boletim do Museu Bot
ˆ
anico
Municipal, 69:1–52. Available at: https:
//www.researchgate.net/publication/313642957
A vegetacao do Parque Estadual de Vila Velha
Municipio de Ponta Grossa Parana Brasil.
Handan-Nader, C., Ho, D. E., and Liu, L. Y. (2021).
Environmental Enforcement: Enhancing the Role of
Satellite Imagery and Deep Learning. Stanford Law
School. Publication date: June 7, 2021; Date created:
2021; Date modified: August 10, 2021; December 5,
2022.
Instituto
´
Agua e Terra (2024). Estado regulamenta cultivo
de pinus e outras plantas ex
´
oticas invasoras no paran
´
a.
Accessed on December 16, 2024.
Li, J., Pei, Y., Zhao, S., Xiao, R., Sang, X., and Zhang, C.
(2020). A review of remote sensing for environmen-
tal monitoring in china. Remote Sensing, 12(7):1130.
Submission received: 17 February 2020; Revised: 27
March 2020; Accepted: 30 March 2020; Published: 2
April 2020.
Li, W., Dong, R., Fu, H., and Yu, L. (2019). Large-scale oil
palm tree detection from high-resolution satellite im-
ages using two-stage convolutional neural networks.
Remote Sensing, 11(1):11. Submission received: 2
November 2018; Revised: 2 December 2018; Ac-
cepted: 19 December 2018; Published: 20 December
2018.
Nascente, J. C. and Nunes, G. M. (2020). Uso de sis-
temas de aeronaves remotamente pilotadas (rpas) na
quantificac¸
˜
ao de incremento anual em volume de
aterro sanit
´
ario. Revista Brasileira de Gest
˜
ao Ambi-
ental e Sustentabilidade, 7(16):665–678. Published
on: August 31, 2020.
QGIS. Qgis geographic information system. Open Source
Geospatial Foundation Project. Available at: https://
qgis.org. Accessed on: September 17, 2024.
Qian, Y., Qin, H., Wang, W., Xiong, X., Yao, Y., and Zhou,
W. (2023). Detecting dominant tree species in urban
areas using zhuhai-1 satellite imagery. Journal of Ap-
plied Remote Sensing, 17(2):289–300.
Ronneberger, O., Fischer, P., and Brox, T. (2015).
U-net: Convolutional networks for biomedi-
cal image segmentation. ArXiv. Available at:
https://api.semanticscholar.org/CorpusID:3719281.
Accessed on: September 17, 2024.
Shelhamer, E., LONG, J., and Darrell, T. (2015). Fully
convolutional networks for semantic segmentation.
In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3431–3440. Avail-
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
878