
Al-Alawi, A. I. and Ghanem, Y. A. (2024). Predicting em-
ployee attrition using machine learning: A systematic
literature review. In 2024 ASU International Confer-
ence in Emerging Technologies for Sustainability and
Intelligent Systems (ICETSIS), pages 526–530. IEEE.
Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K.,
Alonso-Moral, J. M., Confalonieri, R., Guidotti, R.,
Del Ser, J., D
´
ıaz-Rodr
´
ıguez, N., and Herrera, F.
(2023a). Explainable artificial intelligence (xai):
What we know and what is left to attain trustworthy
artificial intelligence. Information fusion, 99:101805.
Ali, S., Akhlaq, F., Imran, A. S., Kastrati, Z., Daudpota,
S. M., and Moosa, M. (2023b). The enlightening
role of explainable artificial intelligence in medical
& healthcare domains: A systematic literature review.
Computers in Biology and Medicine, page 107555.
Arrieta, A. B., D
´
ıaz-Rodr
´
ıguez, N., Del Ser, J., Bennetot,
A., Tabik, S., Barbado, A., Garc
´
ıa, S., Gil-L
´
opez, S.,
Molina, D., Benjamins, R., et al. (2020). Explainable
artificial intelligence (xai): Concepts, taxonomies, op-
portunities and challenges toward responsible ai. In-
formation fusion, 58:82–115.
Bertrand, A., Belloum, R., Eagan, J. R., and Maxwell,
W. (2022). How cognitive biases affect xai-assisted
decision-making: A systematic review. In Proceed-
ings of the 2022 AAAI/ACM Conference on AI, Ethics,
and Society, pages 78–91.
Bhattacharya, P., Zuhair, M., Roy, D., Prasad, V. K., and
Savaliya, D. (2022). Aajeevika: Trusted explainable
ai based recruitment scheme in smart organizations. In
2022 5th International Conference on Contemporary
Computing and Informatics (IC3I), pages 1002–1008.
IEEE.
Black, J. S. and van Esch, P. (2020). Ai-enabled recruiting:
What is it and how should a manager use it? Business
Horizons, 63(2):215–226.
Bogen, M. (2019). All the ways hiring algorithms can in-
troduce bias. Harvard Business Review, 6:2019.
B
¨
ohm, M. J., von Gaudecker, H.-M., and Schran, F. (2024).
Occupation growth, skill prices, and wage inequality.
Journal of Labor Economics, 42(1):201–243.
Bujold, A., Roberge-Maltais, I., Parent-Rocheleau, X.,
Boasen, J., S
´
en
´
ecal, S., and L
´
eger, P.-M. (2024). Re-
sponsible artificial intelligence in human resources
management: a review of the empirical literature. AI
and Ethics, 4(4):1185–1200.
ˇ
Cernevi
ˇ
cien
˙
e, J. and Kaba
ˇ
sinskas, A. (2024). Explain-
able artificial intelligence (xai) in finance: A system-
atic literature review. Artificial Intelligence Review,
57(8):216.
Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S.,
Rodriguez-Espindola, O., Abadie, A., and Truong, L.
(2023). Unlocking the value of artificial intelligence
in human resource management through ai capabil-
ity framework. Human resource management review,
33(1):100899.
Das, S., Chakraborty, S., Sajjan, G., Majumder, S., Dey,
N., and Tavares, J. M. R. (2022). Explainable ai for
predictive analytics on employee attrition. In Inter-
national Conference on Soft Computing and its Engi-
neering Applications, pages 147–157. Springer.
Das Swain, V., Gao, L., Wood, W. A., Matli, S. C., Abowd,
G. D., and De Choudhury, M. (2023). Algorithmic
power or punishment: Information worker perspec-
tives on passive sensing enabled ai phenotyping of
performance and wellbeing. In Proceedings of the
2023 CHI Conference on Human Factors in Comput-
ing Systems, pages 1–17.
Fidel, G., Bitton, R., and Shabtai, A. (2020). When explain-
ability meets adversarial learning: Detecting adversar-
ial examples using shap signatures. In 2020 interna-
tional joint conference on neural networks (IJCNN),
pages 1–8. IEEE.
Girona, A. E. and Yarger, L. (2024). To impress an algo-
rithm: Minoritized applicants’ perceptions of fairness
in ai hiring systems. In International Conference on
Information, pages 43–61. Springer.
Hauer, M. P., Kevekordes, J., and Haeri, M. A. (2021).
Legal perspective on possible fairness measures–a le-
gal discussion using the example of hiring decisions.
Computer Law & Security Review, 42:105583.
Hunkenschroer, A. L. and Kriebitz, A. (2023). Is ai recruit-
ing (un) ethical? a human rights perspective on the use
of ai for hiring. AI and Ethics, 3(1):199–213.
Johansson, F., Shalit, U., and Sontag, D. (2016). Learn-
ing representations for counterfactual inference. In
International conference on machine learning, pages
3020–3029. PMLR.
Kitchenham, B. A., Budgen, D., and Brereton, P. (2015).
Evidence-based software engineering and systematic
reviews, volume 4. CRC press.
Koutsoumpis, A., Ghassemi, S., Oostrom, J. K., Holtrop,
D., Van Breda, W., Zhang, T., and de Vries, R. E.
(2024). Beyond traditional interviews: Psychomet-
ric analysis of asynchronous video interviews for per-
sonality and interview performance evaluation using
machine learning. Computers in Human Behavior,
154:108128.
Lashkari, M. and Cheng, J. (2023). “finding the magic
sauce”: Exploring perspectives of recruiters and job
seekers on recruitment bias and automated tools. In
Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pages 1–16.
Linardatos, P., Papastefanopoulos, V., and Kotsiantis, S.
(2020). Explainable ai: A review of machine learn-
ing interpretability methods. Entropy, 23(1):18.
Lukacik, E.-R., Bourdage, J. S., and Roulin, N. (2022). Into
the void: A conceptual model and research agenda for
the design and use of asynchronous video interviews.
Human Resource Management Review, 32(1):100789.
Lundberg, S. (2017). A unified approach to interpreting
model predictions. arXiv preprint arXiv:1705.07874.
Makanga, C., Mukwaba, D., Agaba, C. L., Murindanyi, S.,
Joseph, T., Hellen, N., and Marvin, G. (2024). Ex-
plainable machine learning and graph neural network
approaches for predicting employee attrition. In Pro-
ceedings of the 2024 Sixteenth International Confer-
ence on Contemporary Computing, pages 243–255.
Marra, T. and Kubiak, E. (2024). Addressing diversity in
hiring procedures: a generative adversarial network
approach. AI and Ethics, pages 1–25.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
1456