
discussed potential problems that our method could
encounter in real world scenarios.
Our algorithm performed very well on our syn-
thetic pathways dataset. The dataset was constructed
to focus on pathway with topologies which have been
previously identified as problematic. This makes us
confident that by proceeding with the development of
our method (e.g., by integrating it with solutions that
have been already explored in the literature) we can be
able to obtain very good results also on real pathways.
Having a method that provides qualitative insights re-
garding the effects of a local perturbations on a global
level would be beneficial to understand, for example,
the alterations caused by a disease-induced mutation
or by a treatment even in cases where current methods
fail due to lack in information. Such method would
be also useful to seamlessly spot configurations that
result in major alterations so that they can be further
studied more accurately.
REFERENCES
Angeli, D. et al. (2010). Graph-theoretic characterizations
of monotonicity of chemical networks in reaction co-
ordinates. J Math Biol, 61:581–616.
Bailey, J. E. (2001). Complex biology with no parameters.
Nature biotechnology, 19(6):503–504.
Bornstein, B. J., Keating, S. M., Jouraku, A., and Hucka, M.
(2008). LibSBML: An API library for SBML. Bioin-
formatics, 24(6):880–881.
Bove, P., Micheli, A., Milazzo, P., and Podda, M.
(2020). Prediction of dynamical properties of bio-
chemical pathways with graph neural networks. In
Proc. of BIOSTEC/Bioinformatics 2020, pages 32–43.
Scitepress.
Carlin, D. E., Demchak, B., Pratt, D., Sage, E., and Ideker,
T. (2017). Network propagation in the cytoscape
cyberinfrastructure. PLoS Computational Biology,
13(10):e1005598.
Charmpi, K., Chokkalingam, M., Johnen, R., and Beyer, A.
(2021). Optimizing network propagation for multi-
omics data integration. PLoS Computational Biology,
17(11):e1009161.
Cowen, L., Ideker, T., Raphael, B. J., and Sharan, R. (2017).
Network propagation: a universal amplifier of genetic
associations. Nature Reviews Genetics, 18(9):551–
562.
Craciun, G. et al. (2006). Understanding bistability in
complex enzyme-driven reaction networks. PNAS,
103:8697–8702.
Fontanesi, M., Micheli, A., Milazzo, P., and Podda, M.
(2023). Exploiting the structure of biochemical path-
ways to investigate dynamical properties with neural
networks for graphs. Bioinformatics, 39(11):btad678.
Gillespie, D. T. (2007). Stochastic simulation of chemical
kinetics. Annu. Rev. Phys. Chem., 58(1):35–55.
Gratie, D.-E., Iancu, B., and Petre, I. (2013). Ode analysis
of biological systems. Formal Methods for Dynamical
Systems: 13th International School on Formal Meth-
ods for the Design of Computer, Communication, and
Software Systems, SFM 2013, Bertinoro, Italy, June
17-22, 2013. Advanced Lectures, pages 29–62.
Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle,
J. C., Kitano, H., Arkin, A. P., Bornstein, B. J., Bray,
D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S.,
Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hed-
ley, W. J., Hodgman, T. C., Hofmeyr, J.-H., Hunter,
P. J., Juty, N. S., Kasberger, J. L., Kremling, A., Kum-
mer, U., Le Nov
`
ere, N., Loew, L. M., Lucio, D.,
Mendes, P., Minch, E., Mjolsness, E. D., Nakayama,
Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff,
J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D.,
Stelling, J., Takahashi, K., Tomita, M., Wagner, J.,
Wang, J., and the rest of the SBML Forum (2003). The
systems biology markup language (SBML): a medium
for representation and exchange of biochemical net-
work models. Bioinformatics, 19(4):524–531.
Kanehisa, M. (2002). The kegg database. In ‘In
silico’simulation of biological processes: Novartis
Foundation Symposium 247, volume 247, pages 91–
103. Wiley Online Library.
Kitano, H. (2002). Systems biology: a brief overview. sci-
ence, 295(5560):1662–1664.
Malik-Sheriff, R. S., Glont, M., Nguyen, T. V. N., Tiwari,
K., Roberts, M. G., Xavier, A., Vu, M. T., Men, J.,
Maire, M., Kananathan, S., Fairbanks, E. L., Meyer,
J. P., Arankalle, C., Varusai, T. M., Knight-Schrijver,
V., Li, L., Due
˜
nas-Roca, C., Dass, G., Keating, S. M.,
Park, Y. M., Buso, N., Rodriguez, N., Hucka, M., and
Hermjakob, H. (2020). BioModels — 15 years of
sharing computational models in life science. Nucleic
Acids Research, 48(D1):D407–D415. gkz1055.
Milacic, M., Beavers, D., Conley, P., Gong, C., Gillespie,
M., Griss, J., Haw, R., Jassal, B., Matthews, L., May,
B., et al. (2024). The reactome pathway knowledge-
base 2024. Nucleic Acids Research, 52(D1):D672–
D678.
Picart-Armada, S., Barrett, S. J., Will
´
e, D. R., Perera-
Lluna, A., Gutteridge, A., and Dessailly, B. H. (2019).
Benchmarking network propagation methods for dis-
ease gene identification. PLoS Computational Biol-
ogy, 15(9):e1007276.
Santolini, M. and Barab
´
asi, A.-L. (2018). Predicting per-
turbation patterns from the topology of biological net-
works. PNAS, 115(27):E6375–E6383.
Welsh, C., Xu, J., Smith, L., K
¨
onig, M., Choi, K., and
Sauro, H. M. (2022). libRoadRunner 2.0: a high
performance SBML simulation and analysis library.
Bioinformatics, 39(1):btac770.
Yordanov, P. et al. (2020). Bioswitch: a tool for the de-
tection of bistability and multi-steady state behaviour
in signalling and gene regulatory networks. Bioinfor-
matics, 36(5):1640–1641.
Towards a New Method for Perturbation Analysis in Biochemical Pathways Based on Network Propagation
691