
and stochastic optimal control, volume 1. Springer
Science & Business Media.
Gu, J., Bellone, M., Pivo
ˇ
nka, T., and Sell, R. (2024).
Clft: Camera-lidar fusion transformer for semantic
segmentation in autonomous driving. arXiv preprint
arXiv:2404.17793.
Gu, J., Lind, A., Chhetri, T. R., Bellone, M., and Sell, R.
(2023). End-to-end multimodal sensor dataset col-
lection framework for autonomous vehicles. Sensors,
23(15):6783.
Huang, K., Shi, B., Li, X., Li, X., Huang, S., and
Li, Y. (2022). Multi-modal sensor fusion for
auto driving perception: A survey. arXiv preprint
arXiv:2202.02703.
ISO (2011). Iso 26262 road vehicles– functional safety. ISO
Standard (2011).
Karafyllis, I., Theodosis, D., and Papageorgiou, M. (2022).
Lyapunov-based two-dimensional cruise control of
autonomous vehicles on lane-free roads. Automatica,
145:110517.
Kirovskii, O. and Gorelov, V. (2019). Driver assistance sys-
tems: analysis, tests and the safety case. iso 26262 and
iso pas 21448. In IOP Conference Series: Materials
Science and Engineering, volume 534, page 012019.
IOP Publishing.
Kuznietsov, A., Gyevnar, B., Wang, C., Peters, S., and
Albrecht, S. V. (2024). Explainable ai for safe and
trustworthy autonomous driving: A systematic review.
arXiv preprint arXiv:2402.10086.
LaValle, S. M. (2006). Planning algorithms. Cambridge
university press.
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin,
J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N.,
and Lee, S.-I. (2020). From local explanations to
global understanding with explainable ai for trees. Na-
ture machine intelligence, 2(1):56–67.
Lundberg, S. M. and Lee, S.-I. (2017). A unified ap-
proach to interpreting model predictions. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc.
Malayjerdi, E., Sell, R., Malayjerdi, M., Udal, A., and Bel-
lone, M. (2022). Practical path planning techniques in
overtaking for autonomous shuttles. Journal of Field
Robotics, 39(4):410–425.
Omeiza, D., Web, H., Jirotka, M., and Kunze, L. (2021).
Towards accountability: Providing intelligible expla-
nations in autonomous driving. In 2021 IEEE Intelli-
gent Vehicles Symposium (IV), pages 231–237. IEEE.
Omeiza, D., Webb, H., Jirotka, M., and Kunze, L. (2022).
Explanations in autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems,
23(8):10142–10162.
Pikner, H., Malayjerdi, M., Bellone, M., Baykara, B. C.,
and Sell, R. (2024). Autonomous driving validation
and verification using digital twins. VEHITS, pages
204–211.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should I trust you?”: Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 1135–1144.
Stanton, N. A. and Young, M. S. (1998). Vehicle automation
and driving performance. Ergonomics, 41(7):1014–
1028.
Weisser, H., Schulenberg, P., Gollinger, H., and Michler, T.
(1999). Autonomous driving on vehicle test tracks:
overview, implementation and vehicle diagnosis. In
Proceedings 199 IEEE/IEEJ/JSAI International Con-
ference on Intelligent Transportation Systems (Cat.
No. 99TH8383), pages 62–67. IEEE.
Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K.
(2020). A survey of autonomous driving: Common
practices and emerging technologies. IEEE access,
8:58443–58469.
Glass-box Automated Driving: Insights and Future Trends
885