
viduals that can be recognized by using these other
features to discriminate between individuals sharing
the same paint code, potentially reducing the need for
bi-color marks to single paint marks to further sim-
plify the practical deployment in the field.
ACKNOWLEDGEMENTS
This research was supported by NSF award 2318597,
USDA/NIFA award 2021-67014-34999 and by IQ-
BIO REU, NSF award 1852259. This work used
the UPR High-Performance Computing facility, sup-
ported by NIH/NIGMS, award 5P20GM103475.
REFERENCES
Alburaki, M., Madella, S., and Corona, M. (2021). Rfid
technology serving honey bee research: A compre-
hensive description of a 32-antenna system to study
honey bee and queen behavior. Applied System Inno-
vation, 4(4):88.
Badgujar, C. M., Poulose, A., and Gan, H. (2024). Agricul-
tural object detection with you look only once (yolo)
algorithm: A bibliometric and systematic literature re-
view.
Bergamini, L., Porrello, A., Dondona, A. C., Del Negro, E.,
Mattioli, M., D’alterio, N., and Calderara, S. (2018).
Multi-views embedding for cattle re-identification. In
2018 14th international conference on signal-image
technology & internet-based systems (SITIS), pages
184–191. IEEE.
Borlinghaus, P., Tausch, F., and Rettenberger, L. (2023). A
purely visual re-id approach for bumblebees (bombus
terrestris). Smart Agricultural Technology, 3:100135.
Bozek, K., Hebert, L., Portugal, Y., Mikheyev, A. S., and
Stephens, G. J. (2021). Markerless tracking of an
entire honey bee colony. Nature communications,
12(1):1733.
Cakmak, I., Sanderson, C., Blocker, T. D., Lisa Pham, L.,
Checotah, S., Norman, A. A., Harader-Pate, B. K.,
Tyler Reidenbaugh, R., Nenchev, P., Barthell, J. F.,
and Wells, H. (2009). Different solutions by bees to
a foraging problem. Animal Behaviour, 77(5):1273–
1280.
Chan, J., Carri
´
on, H., M
´
egret, R., Agosto-Rivera, J. L., and
Giray, T. (2022). Honeybee re-identification in video:
New datasets and impact of self-supervision. In Pro-
ceedings of the 17th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP 2022), volume
5: VISAPP, pages 517–525.
Chappidi, J. and Sundaram, D. M. (2024). Enhanced ani-
mal detection in complex outdoor environments using
modified yolo v7.
Colin, T., Warren, R. J., Quarrell, S. R., Allen, G. R., and
Barron, A. B. (2022). Evaluating the foraging perfor-
mance of individual honey bees in different environ-
ments with automated field rfid systems. Ecosphere,
13(5).
Crall, J. D., Gravish, N., Mountcastle, A. M., and Combes,
S. A. (2015). Beetag: a low-cost, image-based track-
ing system for the study of animal behavior and loco-
motion. PloS one, 10(9):e0136487.
Gal, A., Saragosti, J., and Kronauer, D. J. (2020). anTraX, a
software package for high-throughput video tracking
of color-tagged insects. eLife, 9.
Giray, T., Abramson, C. I., Chicas-Mosier, A., Brewster,
T., Hayes, C., Rivera-Vega, K., Williams, M., and
Wells, H. (2015). Effect of octopamine manipulation
on honeybee decision making: reward and cost dif-
ferences associated with foraging. Animal Behaviour,
100:144–150.
Hung, K.-L. J., Kingston, J. M., Albrecht, M., Holway,
D. A., and Kohn, J. R. (2018). The worldwide im-
portance of honey bees as pollinators in natural habi-
tats. Proceedings of the Royal Society B: Biological
Sciences, 285(1870):20172140.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). Ultralytics
YOLOv8.
Khalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., El-
Wahed, A. A. A., Algethami, A. F., Musharraf, S. G.,
AlAjmi, M. F., Zhao, C., Masry, S. H. D., Abdel-
Daim, M. M., Halabi, M. F., Kai, G., Al Naggar, Y.,
Bishr, M., Diab, M. A. M., and El-Seedi, H. R. (2021).
Overview of bee pollination and its economic value
for crop production. Insects, 12(8).
Li, S., Li, J., Tang, H., Qian, R., and Lin, W. (2019). ATRW:
a benchmark for amur tiger re-identification in the
wild. arXiv preprint arXiv:1906.05586.
Meyers, L., Cordero, J. R., Bravo, C. C., Noel, F., Agosto-
Rivera, J., Giray, T., and M
´
egret, R. (2023). To-
wards Automatic Honey Bee Flower-Patch Assays
with Paint Marking Re-Identification. Workshop
CV4Animals, in conjunction CVPR 2023, Vancouver,
Canada. arXiv:2311.07407.
Noel, F., Giray, T., Agosto, J. L., Perez, E., Norze, W.,
Padilla, A., Seide, C., and Leconte, Y. (2018). Role
of dopamine on honeybee foraging decisions. In En-
tomology 2018. ESA.
Papafitsoros, K., Adam, L.,
ˇ
Cerm
´
ak, V., and Picek, L.
(2022). Seaturtleid: A novel long-span dataset high-
lighting the importance of timestamps in wildlife re-
identification. arXiv preprint arXiv:2211.10307.
Rodriguez, I. F., Chan, J., Alvarez Rios, M., Branson,
K., Agosto-Rivera, J. L., Giray, T., and M
´
egret, R.
(2022). Automated video monitoring of unmarked and
marked honey bees at the hive entrance. Frontiers in
Computer Science, 3:142.
Rodr
´
ıguez-Cordero, J. A., Santiago-Plaza, G. A., Mey-
ers, L., Noel, F., Figueroa-Santiago, E. J., M
´
egret,
R., Bravo, C. C., Agosto-Rivera, J. L., and Giray, T.
(2024). A real-time edge computing system for mon-
itoring bees at flowers. In Kadoch, M., Lu, K., Ye,
F., and Qian, Y., editors, Proceedings of the Interna-
tional Symposium on Intelligent Computing and Net-
working 2024, pages 365–375, Cham. Springer Na-
ture Switzerland.
Paint Blob Detection and Decoding for Identification of Honey Bees
249